Skip to main content

Wissenschaftliche Information für die Anwendung

  • Chapter
  • First Online:
Klimaanpassung in Forschung und Politik

Zusammenfassung

Der Austausch von Wissen und Information zwischen verschiedenen gesellschaftlichen Gruppen ist oft nicht trivial. Vertreter aus der Öffentlichkeit, verschiedenen Fachkreisen und Behörden oder aus der Wissenschaft generieren sehr unterschiedliches Wissen unter Einbeziehung von unterschiedlichen Graden der Problemorientierung und in ihrer jeweiligen Sprache. Zur Überwindung dieser Barrieren stehen verschiedene Instrumente zur Verfügung. In diesem Artikel werden drei weitverbreitete Formen des Wissenstransfers diskutiert: (1) Assessments mit ihren verschiedenen Formen z. B. auf unterschiedlichen räumlichen Skalen, (2) Indikatoren mit möglichen Rahmenkonzepten, Indikatorensätze und Formen der Evaluierung und (3) web-basierte Plattformen als einfache Möglichkeit der Verbreitung von aktuellen Informationen. Dabei werde zwei Beispiele ausführlich dargestellt, nämlich das am Klimabüro für Polargebiete und Meeresspielgel konzipierte Meereisportal und der am Mitteldeutschen Klimabüro entwickelte Deutsche Dürremonitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ipcc.ch/organization/organization_procedures.shtml

  2. 2.

    voraussichtlicher Titel: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrgs): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. ca. 350 S., über 100 Abb., Berlin Heidelberg. DOI 10.1007/978-3-662-50397-3

  3. 3.

    http://climate-adapt.eea.europa.eu

  4. 4.

    http://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung

  5. 5.

    http://www.klimanavigator.de/

  6. 6.

    www.regionaler-klimaatlas.de

  7. 7.

    http://droughtmonitor.unl.edu/

  8. 8.

    Der Bodenfeuchteindex wird im Experimental Drought Monitor als SSI (Standarised Soil Moisture Index) bezeichnet, ist aber mit dem in diesem Kapitel gezeigten Bodenfeuchteindex SMI deckungsgleich.

  9. 9.

    Abrufbar unter www.ufz.de/duerremonitor bzw. www.ufz.de/drougthmonitor

Literatur

  1. APCC. (2014). Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Austrian Panel on Climate Change (APCC), Verlag der Österreichischen Akademie der Wissenschaften, Wien, Österreich, 1096 Seiten. ISBN 978-3-7001-7699–2.

    Google Scholar 

  2. BACC Author Team. (2008). Assessment of climate change for the baltic sea basin. Springer, 496p. e-ISBN: 978–3–540–72786–6.

    Book  Google Scholar 

  3. Boetius, A. & S. Albrecht et al. (2013). “Export of algal biomass from the melting arctic sea ice.” Science, 339(6126), 1430–1432.

    Article  CAS  Google Scholar 

  4. BMFSFJ. (Bundesministerium für Familie, Senioren, Frauen und Jugend,1999). Zielfindung und Zielformulierung – Ein Leitfaden. Materialien zur Qualitätssicherung in der Kinder- und Jugendhilfe. http://www.univation.org/download/QS_21.pdf.

  5. Cavender-Bares J., Sack L., & Savage J. (2007). Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. (4), 611–620.

    Article  Google Scholar 

  6. CEDIM. (2013, Juni 20). Juni-Hochwasser 2013 in Mitteleuropa - Fokus Deutschland. Bericht 1 – Update 2: Vorbedingungen, Meteorologie, Hydrologie. Forensic Disaster Analysis Group (FDA).

    Google Scholar 

  7. Ciscar, J.C., Feyen, L., Soria, A., Lavalle, C., Raes, F., Perry, M., Nemry, F., Demirel, H., Rozsai, M., Dosio, A., Donatelli, M., Srivastava, A., Fumagalli, D., Niemeyer, S., Shrestha, S., Ciaian, P., Himics, M., Van Doorslaer, B., Barrios, S., Ibáñez, N., Forzieri, G., Rojas, R., Bianchi, A., Dowling, P., Camia, A., Libertà, G., San Miguel, J., de Rigo, D., Caudullo, G., Barredo, J.-I., Paci, D., Pycroft, J, Saveyn, B, Van Regemorter, D, Revesz, T, Vandyck, T, Vrontisi, Z, Baranzelli, C., Vandecasteele, I., Batista e Silva, F., Ibarreta, D. (2014, April). Climate Impacts in Europe. The JRC PESETA II project. 26586 EN. http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=7181.

  8. Corvalán, C., Briggs, D.J., & Kjellstrom, T. (1996). Development of environmental health indicators. In D., Briggs, C., Corvalán, & M., Nurminen, (Eds.), Linkage methods for environment and health analysis. General guidelines. Genf; UNEP, USEPA and WHO.

    Google Scholar 

  9. Dethloff, K., Rinke, A. et al. (2006). “A dynamical link between the Arctic and the global climate system.” Geophysical Research Letters, 33(3), L03703.

    Google Scholar 

  10. Döring, S., Döring, J., & Borg, H. (2011). Vergleich von Trockenheitsindizes zur Nutzung in der Landwirtschaft unter den klimatischen Bedingungen Mitteldeutschlands. Hercynia. N.F., 44, 145–168.

    Google Scholar 

  11. EEA. (2005). EEA core set of indicators, Technical Report 1/2005, European Environment Agency.

    Google Scholar 

  12. EEA. (2010). Use of freshwater resources (CSI 018/WAT 001) - Assessment published Dec 2010, abgerufen unter http://www.eea.europa.eu/data-and-maps/indicators/use-of-freshwater-resources/use-of-freshwater-resources-assessment-2 am 03. März. 2015.

  13. EEA. (2012). Environmental indicator report 2012, Publications Office of the European Union, Luxembourg, ISBN 978-92-9213-315-3, doi:10.2800/4874.

    Google Scholar 

  14. EEA. (2012). Climate change, impacts and vulnerability in Europe 2012, EEA Report No 12/2012. http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012. Zugegriffen: 12. Febr 2015.

  15. Füssel, H.-M., & Klein, R.J.T. (2006). Climate change vulnerability assessments, Climatic Change, 75, 301–329 DOI: 10.1007/s10584-006-0329-3.

    Article  Google Scholar 

  16. Gautier, D. L., Bird, K. J., et al. (2009). “Assessment of undiscovered oil and gas in the arctic.” Science, 324(5931), 1175–1179.

    Article  CAS  Google Scholar 

  17. Harley, M., & van Minnen, J. (2009). Development of adaptation indicators. ETC/ACC Technical Paper 2009/6, http://air-climate.eionet.europa.eu/docs//ETCACC_TP_2009_6_Adaptation_Indicators.pdf.

    Google Scholar 

  18. Harrison, P. A., Holman, I. P., Cojocaru, G., Kok, K., Kontogianni, A., Metzger, M. J., Gramberger, M. (2013). Combining qualitative and quantitative understanding for exploring cross-sectoral climate change impacts, adaptation and vulnerability in Europe. Regional Environmental Change, 13, 761–780, DOI 10.1007/s10113-012-0361–y.

    Article  Google Scholar 

  19. Hilden, M., & Marx, A. (2013). Evaluation of climate change state, impact and vulnerability indicators, ETC CCA Technical Paper 02/2013. http://cca.eionet.europa.eu/docs/TP_2-2013.

  20. Hambling, H., Weinstein, P., & Slaney, D. (2001). A review of frameworks for developing environmental health indicators for climate change and health. International Journal of Environmental Research and Public Health. 8(7), 2854–2875.

    Google Scholar 

  21. Hammond, A., Adriaanse, A., Rodenburg, E., Bryant, D., Woodward, R. (1995). Environmental indicators: A systematic approach to measuring and reporting on environmental policy performance in the context of sustainable development. World Resources Institute, Washington DC, S. 50.

    Google Scholar 

  22. IMD. (2014). Experimental drought monitor. https://sites.google.com/a/iitgn.ac.in/india_drought_monitor/info. Zugegriffen: 01. Juli 2014.

  23. IPCC. (2012). Glossary of terms. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, and P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). (S. 555–564). Cambridge University Press, Cambridge, UK, and New York, NY, USA.

    Google Scholar 

  24. Jaiser, R., Dethloff, K., et al. (2012) “Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation.” Tellus A, 64.

    Google Scholar 

  25. Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: An evaluation of drought indices. American Meteorological Society. 83, 1167–1180.

    Article  Google Scholar 

  26. Kjellström, T., & Corvalán, C. (1995). Framework for the development of environmental health indicators. World Health Statistics Quarterly. 48, 144–154.

    Google Scholar 

  27. Kumar, R., Samaniego, L., & Attinger, S. (2010). The effects of spatial discretization and model parameterization on the prediction of extreme runoff characteristics. Journal of Hydrology, 392(1–2), 54–69.

    Article  Google Scholar 

  28. Kumar, R., Samaniego, L., & Attinger, S. (2013). Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resource Research, doi:10.1029/2012WR012195.

    Google Scholar 

  29. Niemeijer & de Groot. (2008). A conceptual framework for selecting environmental indicator sets. Ecological Indicators, (8), 14–25.

    Article  Google Scholar 

  30. Maxim, L., Spangenberg, J., & O’Connor, M. (2009). An analysis of risks for biodiversity under the DPSIR framework. Ecological Economics, 69, 12–23.

    Article  Google Scholar 

  31. Meinke, H., Nelson, R., Kokic, P., Stone, R., Selvaraju, R., Baethgen, W. (2006). Actionable climate knowledge: From analysis to synthesis. Climate Research, 33(1), 101–110.

    Article  Google Scholar 

  32. Meinke, I., & Gerstner, E.-M. (2009). Digitaler Norddeutscher Klimaatlas informiert über möglichen künftigen Klimawandel.– Mitteilungen DMG 3–2009, 17.

    Google Scholar 

  33. Meinke, I., Gerstner, E.-M., von Storch, H., Marx, A., Schipper, H., Kottmeier, Ch., Treffeisen, R., Lemke, P. (2010). „Regionaler Klimaatlas Deutschland der Helmholtz-Gemeinschaft informiert im Internet über möglichen künftigen Klimawandel“, DMG Mitteilungen, 2–2010, 5–7. http://www.dmg-ev.de/gesellschaft/publikationen/pdf/dmg-mitteilungen/2010_2.pdf. & http://www.regionaler-klimaatlas.de/.

    Google Scholar 

  34. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.

    Article  Google Scholar 

  35. NDMC. (2014). U.S. Drought Monitor. http://drought.unl.edu/MonitoringTools/USDroughtMonitor.aspx. Zugegriffen: 01. Juli 2014.

  36. NDMC. (2014). What is Drought? http://drought.unl.edu/DroughtBasics/WhatisDrought.aspx. Zugegriffen: 24. Juni 2014.

  37. NDMC. (2014). Types of Drought. http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx. Zugegriffen: 01. Juli 2014.

  38. O’Connor, M. (2007). The “four spheres” framework for sustainability. Ecological complexity, 3(4), 285–292.

    Article  Google Scholar 

  39. Overland, J. E. & Wang, M. (2013). When will the summer Arctic be nearly sea ice free? Geophysical Research Letters, 40(10), 2097–2101.

    Article  Google Scholar 

  40. Pommerencke, J. (2014). Trendanalyse der Bodenfeuchte auf Basis der naturräumlichen Gliederung Deutschlands. Masterarbeit an der Universität Leipzig, S. 123.

    Google Scholar 

  41. Rothman, D. S., & Robinson, J. B. (1997). Growing pains: a conceptual framework for considering integrated assessments. Environmental Monitoring and Assessment, 46(1–2), 23–43.

    Article  Google Scholar 

  42. Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5), 1–25.

    Article  Google Scholar 

  43. Samaniego, L., Kumar, R., & Zink, M. (2013). Implications of parameter uncertainty on soil moisture drought analysis in Germany. Journal of Hydrometeorology, 14(1), 47–68.

    Article  Google Scholar 

  44. Schomaker, M. (1997). Development of environmental indicators in UNEP. In Paper presented at the land quality indicators and their use in sustainable agriculture and rural development, January 1996, (S. 35–36). Rome: FAO.

    Google Scholar 

  45. Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., & Vogt, J. (2012). Development of a combined drought indicator to detect agricultural drought in Europe. Natural Hazards and Earth System Science, 12(11), 3519–3531.

    Article  Google Scholar 

  46. Smeets, E., & Weterings, R. (1999). Environmental indicators: Typology and overview. EEA Technical report No 25. 19.

    Google Scholar 

  47. Stanners, D., Bosch, P., Dom, A., Gabrielsen, P., Gee, D., Martin, J., Rickard, L. and Weber, J. -L. (2007). Frameworks for environmental assessment and indicators at the EEA. In Sustainable indicators: A scientific assessment, scientific committee on problems of the environment. Island Press, London.

    Google Scholar 

  48. Swart, R. J., Bakkes, J. A., Niessen, L. W., Rotmans, J., de Vries, H. J. M., Weterings, R. (1995). Scanning the global environment: A framework and methodology for integrated environmental reporting and assessment. RIVM, Bilthoven. Report No. 402001002, S. 58.

    Google Scholar 

  49. UBA. (2011). Entwicklung eines Indikatorensystems für die Deutsche Anpassungsstrategie an den Klimawandel (DAS), online verfügbar unter http://www.uba.de/uba-info-medien/4230.html.

  50. UBA. (2015). Monitoringbericht 2015 zur Deutschen Anpassungsstrategie an den Klimawandel. Bericht der Interministeriellen Arbeitsgruppe Anpassungsstrategie der Bundesregierung. Online verfügbar unter http://www.umweltbundesamt.de/publikationen/monitoringbericht-2015. Zugegriffen: 25. Mai 2015.

  51. UNEP. (2004, März). Impacts of Summer 2003 Heat Wave in Europe. Environment Alert Bulletin.

    Google Scholar 

  52. Underwood, E. (2015). Models predict longer, deeper U.S. droughts. Science, 347(6223), 707, DOI: 10.1126/science.347.6223.707.

    Article  CAS  Google Scholar 

  53. U.S. EPA. (2003). Science Policy Council assessment factors: A summary of general assessment factors for evaluating the quality of scientific and technical information. EPA 100/B–03/001.

    Google Scholar 

  54. U.S. EPA. (2014). Climate change indicators in the United States. (3rd ed.). EPA 430-R-14-004. www.epa.gov/climatechange/indicators.

  55. Voigt, T., & van Minnen, J. G. (2007). Proposed structure and indicators for an updated report in 2008, ETC ACC, Copenhagen.

    Google Scholar 

  56. Wilhite, D. A., & Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10, 110–120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Marx, A. et al. (2017). Wissenschaftliche Information für die Anwendung. In: Marx, A. (eds) Klimaanpassung in Forschung und Politik. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-05578-3_7

Download citation

Publish with us

Policies and ethics