Skip to main content

Genomic Insights into Xylella fastidiosa Interactions with Plant and Insect Hosts

  • Chapter
  • First Online:
Genomics of Plant-Associated Bacteria

Abstract

The genome of Xylella fastidiosa encodes the properties that enable it to alternately colonize its plant and insect hosts. In this chapter, we take a holistic approach and explore X. fastidiosa evolution, biology, and management based on information and insights that would not have been possible, or would have been technically challenging, during the pre-genomics period of plant pathology. Analysis of genome sequences illustrates the major physiological differences between X. fastidiosa and plant pathogens in the sibling genus Xanthomonas, which possess substantially larger genomes and a variety of genes that are essential for pathogenicity, yet absent from the X. fastidiosa genome. Genome sequence data have enabled reverse-genetic approaches to transfer knowledge from more genetically tractable organisms, along with examination of gene regulatory effects that are involved in colonization of the various hosts. The availability of reference genome sequences has also facilitated the examination of genetic diversity among X. fastidiosa found in different geographic regions and different host plants. Existing data demonstrates the importance of mobile genetic elements in producing genetic diversity among X. fastidiosa isolates. Genome-wide descriptions of diversity will be a powerful tool to identify the genetic changes that underlie the emergence of new agricultural diseases.

In late 2013 Xylella fastidiosa was reported in southern Italy (Saponari et al. 2013). This report highlights the importance of X. fastidiosa as a quarantine pathogen, and the need to better understand its ecology and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agüero CB, Uratsu SL, Greve C et al (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    PubMed  Google Scholar 

  • Almeida RPP, Backus EA (2004) Stylet penetration behaviors of Graphocephala atropunctata (Signoret) (Hemiptera, Cicadellidae): EPG waveform characterization and quantification. Ann Entomol Soc Am 97:838–851

    Google Scholar 

  • Almeida RPP, Purcell AH (2003a) Transmission of Xylella fastidiosa to grapevines by Homalodisca coagulata (Hemiptera: Cicadellidae). J Econ Entomol 96:264–271

    PubMed  Google Scholar 

  • Almeida RPP, Purcell AH (2003b) Biological traits of Xylella fastidiosa strains from grapes and almonds. Appl Environ Microbiol 69:7447–7452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida RPP, Purcell AH (2006) Patterns of Xylella fastidiosa colonization on the precibarium of sharpshooter vectors relative to transmission to plants. Ann Entomol Soc Am 99:884–890

    Google Scholar 

  • Almeida RPP, Blua MJ, Lopes JRS et al (2005) Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Ann Entomol Soc Am 98:775–786

    Google Scholar 

  • Almeida RPP, Nascimento FE, Chau J et al (2008) Genetic structure and biology of Xylella fastidiosa strains causing disease in citrus and coffee in Brazil. Appl Environ Microbiol 74:3690–3701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida RPP, Killiny N, Newman KL et al (2012) Contribution of rpfB to cell-to-cell signal synthesis, virulence, and vector transmission of Xylella fastidiosa. Mol Plant Microbe Interact 25:453–462

    CAS  PubMed  Google Scholar 

  • Andersen P, Brodbeck B (1989) Temperature and temperature preconditioning on flux and chemical composition of xylem exudate from muscadine grapevines. J Am Soc Hort Sci 114:440–444

    CAS  Google Scholar 

  • Baccari C, Lindow SE (2011) Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Phytopathology 101:77–84

    CAS  PubMed  Google Scholar 

  • Backus EA, Habibi J, Yan FM et al (2005) Stylet penetration by adult Homalodisca coagulata on grape: Electrical penetration graph waveform characterization, tissue correlation, and possible implications for transmission of Xylella fastidiosa. Ann Entomol Soc Am 98:787–813

    Google Scholar 

  • Barber CE, Tang JL, Feng JX et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    CAS  PubMed  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246

    CAS  PubMed  Google Scholar 

  • Beaulieu ED, Ionescu M, Chatterjee S et al (2013) Characterization of a diffusible signaling factor from Xylella fastidiosa. mBio 4:e00539-12

    Google Scholar 

  • Berisha B, Chen YD, Zhang GY et al (1998) Isolation of Peirce’s disease bacteria from grapevines in Europe. Eur J Plant Pathol 104:427–433

    Google Scholar 

  • Bhattacharyya A, Stilwagen S, Ivanova N et al (2002) Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. Proc Natl Acad Sci USA 99:12403–12408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blom J, Albaum SP, Doppmeier D et al (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinf 10:154

    Google Scholar 

  • Brlansky RH, Timmer LW, French WJ et al (1983) Colonization of the sharpshooter vectors, Oncometopia nigricans and Homalodisca coagulata, by xylem-limited bacteria. Phytopathology 73:530–535

    Google Scholar 

  • Caserta R, Takita MA, Targon ML et al (2010) Expression of Xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl Environ Microbiol 76:4250–4259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman RF (1998) The insects, structure and function, 4th edn. Cambridge University Press, Cambridge, p 770

    Google Scholar 

  • Chatelet DS, Wistrom CM, Purcell AH et al (2011) Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. Ann Bot 108:73–85

    PubMed Central  PubMed  Google Scholar 

  • Chatterjee S, Almeida RPP, Lindow SE (2008a) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Ann Rev Phytopathol 46:243–271

    CAS  Google Scholar 

  • Chatterjee S, Wistrom C, Lindow SE (2008b) A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci USA 105:2670–2675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee S, Newman KL, Lindow SE (2008c) Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol Plant Microbe Interact 21:1309–1315

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Killiny N, Almeida RPP et al (2010) Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission. Mol Plant Microbe Interact 23:1356–1363

    CAS  PubMed  Google Scholar 

  • Chen J, Xie G, Han S et al (2010) Whole genome sequences of two Xylella fastidiosa strains (M12 and M23) causing almond leaf scorch disease in California. J Bacteriol 192:4534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clifford JC, Rapicavoli JN, Roper MC (2013) A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. Mol Plant Microbe Interact 26:676–685

    CAS  PubMed  Google Scholar 

  • Coletta-Filho HD, Takita MA, De Souza AA et al (2001) Differentiation of strains of Xylella fastidiosa by a variable number of tandem repeat analysis. Appl Environ Microbiol 67:4091–4095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coletta-Filho HD, Bittleston LS, Almeida RPP (2011) Spatial genetic structure of a vector-borne generalist pathogen. Appl Environ Microbiol 77:2596–2601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colnaghi Simionato AV, da Silva DS, Lambais M et al (2007) Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J Mass Spect 42:1375–1381

    Google Scholar 

  • Comas I, Moya A, Gonzales-Candelas F (2007) From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic & #x03B3;-proteobacteria as a test case. Syst Biol 56:1–16

    CAS  PubMed  Google Scholar 

  • Cursino L, Li Y, Zaini PA et al (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 299:193–199

    CAS  PubMed  Google Scholar 

  • Cursino L, Galvani CD, Athinuwat D et al (2011) Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa. Mol Plant Microbe Interact 24:1198–1206

    CAS  PubMed  Google Scholar 

  • Damsteegt VD, Brlansky RH, Phillips PA et al (2006) Transmission of Xylella fastidiosa, causal agent of citrus variegated chlorosis, by the glassy-winged sharpshooter, Homalodisca coagulata. Plant Dis 90:567–570

    Google Scholar 

  • Dandekar AM, Gouran H, Ibáñez AM et al (2012) An engineered innate immune defense protects grapevines from Pierce disease. Proc Natl Acad Sci USA 109:3721–3725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daugherty MP, Almeida RPP (2009) Estimating Xylella fastidiosa transmission parameters: decoupling sharpshooter number and feeding period. Entomol Exp Appl 132:84–92

    Google Scholar 

  • Daugherty MP, Lopes JRS, Almeida RPP (2010) Vector within-host feeding preference mediates transmission of a heterogeneously distributed pathogen. Ecol Entomol 35:360–366

    Google Scholar 

  • Davis MJ, Purcell AH, Thomson SV (1978) Pierce’s disease of grapevines: isolation of the causal bacterium. Science 199:75–77

    CAS  PubMed  Google Scholar 

  • De La Fuente L, Burr TJ, Hoch HC (2007) Mutations in Type I and Type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J Bacteriol 189:7507–7510

    Google Scholar 

  • Doi Y, Teranaka M, Yora K et al (1967) Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or Paulownia witches’ broom. Ann Phytopath Soc Jpn 33:259–266

    Google Scholar 

  • Dow JM, Crossman L, Findlay K et al (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci USA 100:10995–11000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dugravot S, Backus EA, Reardon BJ et al (2008) Correlations of cibarial muscle activities of Homalodisca ssp. sharpshooters (Hemiptera: Cicadellidae) with EPG ingestion waveform and excretion. J Insect Physiol 54:1467–1478

    CAS  PubMed  Google Scholar 

  • Esnault E, Valens M, Espéli O, Boccard F (2007) Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet 3:e226

    PubMed Central  PubMed  Google Scholar 

  • European and Mediterranean Plant Protection Organization (2004) Diagnostic protocols for regulated pests: Xylella fastidiosa. OEPP/EPPO Bulletin, pp 155–157

    Google Scholar 

  • Federal Register (2012) Agricultural bioterrorism protection act of 2002; biennial review and republication of the select agent and toxin list; amendments to the select agent and toxin regulations

    Google Scholar 

  • Frazier NW (1965) Xylem viruses and their insect vectors. Proceedings international conference on virus and vector on perennial hosts, with special reference to Vitis. University of California, Division of Agricultural Sciences, Davis, California, pp 91–99

    Google Scholar 

  • Freitag JH (1951) Host range of Pierce’s disease virus of grapes as determined by insect transmission. Phytopathology 41:920–934

    Google Scholar 

  • Fry SM, Milholland RD (1990) Response of resistant, tolerant, and susceptible grapevine tissues to invasion by the Pierce’s disease bacterium, Xylella fastidiosa. Phytopathology 80:66–69

    Google Scholar 

  • Fuller KB (2012) The economics of Pierce’s Disease in the California winegrape industry. University of California, Davis, PhD, Dissertation

    Google Scholar 

  • Goodwin PH, Zhang S (1997) Distribution of Xylella fastidiosa in southern Ontario as determined by the polymerase chain reaction. Can. J. Plant Pathol. 19:13–18

    Google Scholar 

  • Greenspan MD, Schultz HR, Matthews MA (1996) Field evaluation of water transport in grape berries during water deficits. Physiol Plant 97:55–62

    CAS  Google Scholar 

  • Guilhabert MR, Kirkpatrick BC (2003) Transformation of Xylella fastidiosa with broad host range RSF1010 derivative plasmids. Mol Plant Pathol 4:279–285

    CAS  PubMed  Google Scholar 

  • Guilhabert MR, Kirkpatrick BC (2005) Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute to X. fastidiosa biofilm maturation and colonization and attenuate virulence. Mol Plant Microbe Interact 18:856–868

    CAS  PubMed  Google Scholar 

  • Guilhabert MR, Stewart VJ, Kirkpatrick BC (2006) Characterization of putative rolling-circle plasmids from the Gram-negative bacterium Xylella fastidiosa and their use as shuttle vectors. Plasmid 55:70–80

    CAS  PubMed  Google Scholar 

  • Ham JJ (2013) Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. Mol Plant Pathol 14:308–322

    CAS  PubMed  Google Scholar 

  • He YW, Wu J, Cha JS, Zhang LH (2010) Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10:187

    Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363

    CAS  PubMed  Google Scholar 

  • Hendson M, Purcell AH, Chen D et al (2001) Genetic diversity of Pierce’s disease strains and other pathotypes of Xylella fastidiosa. Appl Environ Microbiol 67:895–903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hewitt WB (1958) The probable home of Pierce’s disease virus. Am J Enol Vitic 9:94–98

    Google Scholar 

  • Hewitt WB, Frazier NW, Freitag JH (1949) Pierce’s disease investigations. Hilgardia 19:207–264

    Google Scholar 

  • Hill BL, Purcell AH (1995a) Multiplication and movement of Xylella fastidiosa within grapevine and four other plants. Phytopathology 85:1368–1372

    Google Scholar 

  • Hill BL, Purcell AH (1995b) Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 85:209–212

    Google Scholar 

  • Hill BL, Purcell AH (1997) Populations of Xylella fastidiosa in plants required for transmission by an efficient vector. Phytopathology 87:1197–1201

    CAS  PubMed  Google Scholar 

  • Hopkins DL (1985) Physiological and pathological characteristics of virulent and avirulent strains of the bacterium that causes Pierce’s disease of grapevine. Phytopathology 75:713–717

    Google Scholar 

  • Hopkins DL (1989) Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290

    Google Scholar 

  • Hopkins DL, Mollenhauer HH (1973) Rickettsia-like bacterium associated with Pierce’s disease of grapes. Science 179:298–300

    CAS  PubMed  Google Scholar 

  • Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066

    Google Scholar 

  • Ishida ML, Andersen PC, Leite B (2004) Effect of Vitis vinifera L. cv. Chardonnay xylem fluid on cecropin B activity against Xylella fastidiosa. Mol Plant Pathol 64:73–81

    CAS  Google Scholar 

  • Killiny N, Almeida RPP (2009a) Xylella fastidiosa afimbrial adhesins mediate cell transmission to plants by leafhopper vectors. Appl Environ Microbiol 75:521–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killiny N, Almeida RPP (2009b) Host structural carbohydrate induces vector transmission of a bacterial plant pathogen. Proc Natl Acad Sci USA 106:22416–22420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killiny N, Prado SS, Almeida RPP (2010) Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa. Appl Environ Microbiol 76:6134–6140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killiny N, Almeida RPP (2011) Gene regulation mediates host specificity of a bacterial pathogen. Environ Microbiol Rep 3:791–797

    CAS  PubMed  Google Scholar 

  • Killiny N, Rashed A, Almeida RPP (2012) Disrupting the transmission of a vector-borne plant pathogen. Appl Environ Microbiol 78:638–643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killiny N, Hernandez Martinez R, Dumenyo CK et al (2013) The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence and vector transmission. Mol Plant Microbe Interact 26:1044–1053

    CAS  PubMed  Google Scholar 

  • Kono N, Arakawa K, Tomita M (2011) Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genom 12:19

    Google Scholar 

  • Kovach M, Elzer P, Hill D et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    CAS  PubMed  Google Scholar 

  • Krell RK, Boyd EA, Nay JE et al (2007) Mechanical and insect transmission of Xylella fastidiosa to Vitis vinifera. Am J Enol Vitic 58:211–216

    CAS  Google Scholar 

  • Krivanek AF, Walker MA (2005) Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa populations in stems and leaves. Phytopathology 95:44–52

    CAS  PubMed  Google Scholar 

  • Krugner R, Sisterson MS, Lin H (2012) Effects of gender, origin, and age on transmission of Xylella fastidiosa to grapevines by Homalodisca vitripennis (Hemiptera: Cicadellidae). Ann Entomol Soc Am 105:280–286

    Google Scholar 

  • Kung SH, Almeida RPP (2011) Natural competence and recombination in the plant pathogen Xylella fastidiosa. Appl Environ Microbiol 77:5278–5284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kung SH, Retchless AC, Kwan JY et al (2013) Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl Environ Microbiol 79:1712–1717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MW, Rogers EE, Stenger DC (2010) Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa. Appl Environ Microbiol 76:7734–7740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MW, Rogers EE, Stenger DC (2012) Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. Phytopathology 102:32–40

    CAS  PubMed  Google Scholar 

  • Lindeberg M, Cunnac S, Collmer A (2009) The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol Plant Pathol 10:767–775

    CAS  PubMed  Google Scholar 

  • Lopes JRS, Daugherty MP, Almeida RPP (2009) Context-dependent transmission of a generalist plant pathogen: host species and pathogen strain mediate insect vector competence. Entomol Exp Appl 131:216–224

    Google Scholar 

  • Lopes SA, Marcussi S, Torres SCZ et al (2003) Weeds as alternative hosts of the citrus, coffee, and plum strains of Xylella fastidiosa in Brazil. Plant Dis 87:544–549

    Google Scholar 

  • Ma W, Dong FFT, Stavrinides J et al (2006) Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2:e209

    PubMed Central  PubMed  Google Scholar 

  • Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A et al (2004) Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 32:3781–3791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto A, Young GM, Igo MM (2009) Chromosome-based genetic complementation system for Xylella fastidiosa. Appl Environ Microbiol 75:1679–1687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mei J, Benashski S, Firshein W (1995) Interactions of the origin of replication (oriV) and initiation proteins (TrfA) of plasmid RK2 with submembrane domains of Escherichia coli. J Bacteriol 177:6766–6772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meidanis J, Braga MDV, Verjovski-Almeida S (2002) Whole-genome analysis of transporters in the plant pathogen Xylella fastidiosa. Microbiol Mol Biol Rev 66:272–299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meng Y, Li Y, Galvani CD et al (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187:5560–5567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer MM, Kirkpatrick BC (2011) Exogenous applications of abscisic acid increase curing of Pierce’s disease-affected grapevines growing in pots. Plant Dis 95:173–177

    CAS  Google Scholar 

  • Minsavage GV, Thompson CM, Hopkins DL et al (1994) Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84:456–461

    CAS  Google Scholar 

  • Monteiro PB, Teixeira DC, Palma RR et al (2001) Stable transformation of the Xylella fastidiosa citrus variegated chlorosis strain with oriC plasmids. Appl Environ Microbiol 67:2263–2269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monteiro-Vitorello CB, De Oliveira MC, Zerillo MM et al (2005) Xylella and Xanthomonas mobil’omics. OMICS 9:146–159

    CAS  PubMed  Google Scholar 

  • Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627–633

    CAS  PubMed  Google Scholar 

  • Moreira LM, De Souza RF, Almeida NF Jr, Setubal JC, Oliveira JC, Furlan LR, Ferro JA, da Silva AC (2004) Comparative genomics analyses of citrus-associated bacteria. Annu Rev Phytopathol 42:163–184

    Google Scholar 

  • Moreira LM, De Souza RF, Digiampietri LA, Da Silva AC, Setubal JC (2005) Comparative analyses of Xanthomonas and Xylella complete genomes. OMICS 9:43–76

    Google Scholar 

  • Newman KL, Almeida RPP, Purcell AH et al (2003) Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl Environ Microbiol 69:7319–7327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newman KL, Almeida RPP, Purcell AH et al (2004) Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci USA 101:1737–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunes LR, Rosato YB, Muto NH et al (2003) Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. Genome Res 13:570–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunney L, Yuan X, Bromley R et al (2010) Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce’s disease of grapevine in the US. PLos One 5:e15488

    PubMed Central  PubMed  Google Scholar 

  • Nunney L, Yuan X, Bromley RE et al (2012) Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. Appl Environ Microbiol 78:4702–4714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunney L, Vickerman DB, Bromley RE et al (2013) Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Appl Environ Microbiol 79:2189–2200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunney L, Schuenzel EL, Scally M, Bromley RE, Stouthamer R (2014) Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Appl Environ Microbiol 80:3025–3033

    Google Scholar 

  • Paião FG, Meneguim AM, Casagrande EC et al (2002) Envolvimento de cigarras (Homoptera, Cicadidae) na transmissão de Xylella fastidiosa em cafeeiro. Fitopatol Brasil 27:S67

    Google Scholar 

  • Perez-Donoso AG, Sun Q, Roper MC et al (2010) Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol 152:1748–1759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce NB (1892) The California vine disease. US Dept Agric Div Veg Pathol Bull 2:22

    Google Scholar 

  • Pieretti I, Royer M, Barbe V et al (2009) The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genom 10:616

    Google Scholar 

  • Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. nov, sp nov, a nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol 58:2147–2157

    CAS  PubMed  Google Scholar 

  • Pooler MR, Hartung JS, Fenton RG (1997) Sequence analysis of a 1296-nucleotide plasmid from Xylella fastidiosa. FEMS Microbiol Lett 155:217–222

    CAS  PubMed  Google Scholar 

  • Purcell AH (2013) Paradigms: examples from the bacterium Xylella fastidiosa. Annu Rev Phytopathol 51:339–356

    CAS  PubMed  Google Scholar 

  • Purcell AH (1977) Cold therapy of Pierce’s disease of grapevines. Plant Dis Rep 61:514–518

    Google Scholar 

  • Purcell AH (1980) Environmental therapy for Pierce’s disease of grapevines. Plant Dis 64:388–390

    Google Scholar 

  • Purcell AH, Finlay AH (1979) Evidence for noncirculative transmission of Pierce’s disease bacterium by sharpshooter leafhoppers. Phytopathology 69:393–395

    Google Scholar 

  • Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Ann Rev Phytopathol 34:131–151

    CAS  Google Scholar 

  • Purcell AH, Saunders SR (1999) Fate of Pierce’s disease strains of Xylella fastidiosa in common riparian plants in California. Plant Dis 83:825–830

    Google Scholar 

  • Purcell AH, Finlay AH, McLean DL (1979) Pierce’s disease bacterium: mechanism of transmission by leafhopper vectors. Science 206:839–841

    CAS  PubMed  Google Scholar 

  • Qin X, Hartung JS (2001) Construction of a shuttle vector and transformation of Xylella fastidiosa with plasmid DNA. Curr Microbiol 43:158–162

    CAS  PubMed  Google Scholar 

  • Randall JJ, Goldberg NP, Kemp JD et al (2009) Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States. Appl Environ Microbiol 75:5631–5638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rashed A, Killiny N, Kwan J et al (2011) Background matching behaviour and pathogen acquisition: plant site preference does not predict the bacterial acquisition efficiency of vectors. Arthropod Plant Interact 5:97–106

    Google Scholar 

  • Rathé AA, Pilkington LJ, Gurr GM et al (2012a) Potential for persistence and within-plant movement of Xylella fastidiosa in Australian native plants. Aus Plant Pathol 41:405–412

    Google Scholar 

  • Rathé AA, Pilkington LJ, Gurr GM et al (2012b) Incursion preparedness: anticipating the arrival of an economically important plant pathogen Xylella fastidiosa Wells (Proteobacteria: Xanthomonadaceae) and the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) in Australia. Aus J Entomol 51:209–220

    Google Scholar 

  • Redak RA, Purcell AH, Lopes JRS et al (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Ann Rev Entomol 49:243–270

    CAS  Google Scholar 

  • Reddy JD, Reddy SL, Hopkins DL et al (2007) TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:403–410

    CAS  PubMed  Google Scholar 

  • Rocha EPC (2004) Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14:2279–2286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rocha EPC (2008) The organization of the bacterial genome. Ann Rev Genet 42:211–233

    CAS  PubMed  Google Scholar 

  • Rodriguez LM, Grajales A, Arrieta-Ortiz ML et al (2012) Genomes-based phylogeny of the genus Xanthomonas. BMC Microbiol 12:43

    Google Scholar 

  • Rogers EE, Stenger DC (2012) A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa. PloS One 7:e52131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roper MC, Greve LC, Warren JG et al (2007) Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant Microbe Interact 20:411–419

    CAS  PubMed  Google Scholar 

  • Rosa C, Kamita SG, Falk BW (2012) RNA interference is induced in the glassy winged sharpshooter Homalodisca vitripennis by actin dsRNA. Pest Managem Sci 68:995–1002

    CAS  Google Scholar 

  • Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858

    CAS  PubMed  Google Scholar 

  • Sandanayaka WRM, Backus EA (2008) Quantitative comparison of stylet penetration behaviors of glassy-winged sharpshooter on selected hosts. J Econ Entomol 101:1183–1197

    CAS  PubMed  Google Scholar 

  • Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Pathol 95:668

    Google Scholar 

  • Scally M, Schuenzel EL, Stouthamer R et al (2005) Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Appl Environ Microbiol 71:8491–8499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaad NW, Postnikova E, Lacy G et al (2004) Xylella fastidiosa subspecies: X. fastidiosa subsp piercei, subsp. nov, X. fastidiosa subsp. multiplex subsp. nov, and X. fastidiosa subsp. pauca subsp. nov. Syst Appl Microbiol 27:290–300

    CAS  PubMed  Google Scholar 

  • Schreiber HL, Koirala M, Lara A et al (2010) Unraveling the first Xylella fastidiosa subsp fastidiosa genome from Texas. Southwest Entomol 35:479–483

    Google Scholar 

  • Severin HHP (1949) Transmission of the virus of Pierce’s diseasae of grapevines by leafhoppers. Hilgardia 19:190–206

    Google Scholar 

  • Severin HHP (1950) Spittle-insect vectors of Pierce’s disease virus II. Life history and virus transmission. Hilgardia 19:357–382

    Google Scholar 

  • Sharp PM, Bailes E, Grocock RJ et al (2005) Variation in the strength of selected codon usage bias among bacteria. Nucl Acids Res 33:1141–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of codon bias. Phil Trans Royal Soc London B 365:1203–1212

    CAS  Google Scholar 

  • Shi XY, Dumenyo CK, Hernandez-Martinez R et al (2009) Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA. Appl Environ Microbiol 75:2275–2283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silva FR, Vettore AL, Kemper EL et al (2001) Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol Lett 203:165–171

    PubMed  Google Scholar 

  • Silva VS, Shida CS, Rodrigues FB et al (2007) Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. BMC Genom 8:474

    Google Scholar 

  • Silva Neto JF, Koide T, Gomes SL et al (2002) Site-directed gene disruption in Xylella fastidiosa. FEMS Microbiol Lett 210:105–110

    PubMed  Google Scholar 

  • Simpson AJ, Reinach FC, Arruda P et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151–159

    CAS  PubMed  Google Scholar 

  • Stenger DC, Lee MW (2011) Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids. Appl Environ Microbiol 77:2522–2526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stenger DC, Lee MW, Rogers EE et al (2010) Plasmids of Xylella fastidiosa mulberry-infecting strains share extensive sequence identity and gene complement with pVEIS01 from the earthworm symbiont Verminephrobacter eiseniae. Physiol Mol Plant Pathol 74:238–245

    CAS  Google Scholar 

  • Su CC, Chang CJ, Yang WJ et al (2012) Specific characters of 16 rRNA gene and 16S-23S rRNA internal transcribed spacer sequences of Xylella fastidiosa pear leaf scorch strains. Eur J Plant Pathol 132:203–216

    Google Scholar 

  • Su CC, Chang CJ, Chang CM et al (2013) Pierce’s disease of grapevines in Taiwan: isolation, cultivation and pathogenicity of Xylella fastidiosa. J Phytopathol 161:389–396

    CAS  Google Scholar 

  • Summer EJ, Enderle CJ, Ahern SJ et al (2010) Genomic and biological analysis of phage XFas53 and related prophages of Xylella fastidiosa. J Bacteriol 192:179–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Q, Greve LC, Labavitch JM (2011) Polysaccharide compositions of intervessel pit membranes contribute to Pierce’s disease resistance of grapevines. Plant Physiol 155:1976–1987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Q, Sun Y, Walker MA et al (2013) Vascular occlusions in grapevines with pierce’s disease make disease symptom development worse. Plant Physiol 161:1529–1541

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tarsi R, Pruzzo C (1999) Role of surface proteins in Vibrio cholerae attachment to chitin. Appl Environ Microbiol 65:1348–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van der Auwera GA, Król JE, Suzuki H et al (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie Van Leeuw 96:193–204

    Google Scholar 

  • van Sluys MA, de Oliveira MC, Monteiro-Vitorello CB (2003) Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. J Bacteriol 185:1018–1026

    PubMed Central  PubMed  Google Scholar 

  • Varani AM, Souza RC, Nakaya HI (2008) Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation. PloS One 3:e4059

    Google Scholar 

  • Vieira-Silva S, Rocha EPC (2010) The systemic imprint of growth and its uses in ecological (meta)genomics. PloS Genet 6:e1000808

    PubMed Central  PubMed  Google Scholar 

  • Voegel TM, Warren JG, Matsumoto A et al (2010) Localization and characterization of Xylella fastidiosa haemagglutinin adhesins. Microbiology 156:2172–2179

    CAS  PubMed  Google Scholar 

  • Voegel TM, Doddapaneni H, Cheng DW et al (2013) Identification of a response regulator involved in surface attachment, cell–cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa. Mol Plant Pathol 14:256–264

    CAS  PubMed  Google Scholar 

  • Wang LH, He YW, Gao YF et al (2004) A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912

    CAS  PubMed  Google Scholar 

  • Wang N, Li JL, Lindow SE (2012) RpfF-dependent regulon of Xylella fastidiosa. Phytopathology 102:1045–1053

    PubMed  Google Scholar 

  • Wells JM, Raju BC, Hung HY et al (1987) Xylella fastidiosa gen. nov, sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas ssp. Int J Syst Bact 37:136–143

    CAS  Google Scholar 

  • Wilhelm M, Brodbeck BV, Andersen PC et al (2011) Analysis of xylem fluid components in almond cultivars differing in resistance to almond leaf scorch disease. Plant Dis 95:166–172

    Google Scholar 

  • White FF, Potnis N, Jones JB et al (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766

    CAS  PubMed  Google Scholar 

  • Yen MR, Lin NT, Hung CH et al (2002) oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 68:2924–2933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan X, Morano L, Bromley R et al (2010) Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology 100:601–611

    CAS  PubMed  Google Scholar 

  • Zhang S, Flores-Cruz Z, Kumar D et al (2011) The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce’s disease strains. J Bacteriol 193:5576–5577

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank students, researchers, and colleagues that have contributed to the work discussed here. ACR is supported by a postdoctoral fellowship from the Miller Institute for Basic Research in Science. LRS is supported by a postdoctoral fellowship in biology from the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo P. P. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Retchless, A.C., Labroussaa, F., Shapiro, L., Stenger, D.C., Lindow, S.E., Almeida, R.P.P. (2014). Genomic Insights into Xylella fastidiosa Interactions with Plant and Insect Hosts. In: Gross, D., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55378-3_8

Download citation

Publish with us

Policies and ethics