Skip to main content

Bridging the Gap: From Cellular Automata to Differential Equation Models for Pedestrian Dynamics

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

Abstract

Cellular automata (CA) and ordinary differential equation (ODE) based models compete for dominance in microscopic pedestrian dynamics. Both are inspired by the idea that pedestrians are subject to forces. However, there are two major differences: In a CA, movement is restricted to a coarse grid and navigation is achieved directly by pointing the movement in the direction of the forces. Force based ODE models operate in continuous space and navigation is computed indirectly through the acceleration vector. We present two models emanating from the CA and ODE approaches that remove these two differences: the Optimal Steps Model and the Gradient Navigation Model. Both models are very robust and produce trajectories similar to each other, bridging the gap between the older models. Both approaches are grid-free and free of oscillations, giving cause to the hypothesis that the two major differences are also the two major weaknesses of the older models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Build. Environ. 44(3), 437–445 (2009)

    Article  Google Scholar 

  2. Smith, A., James, Ch., Jones, R., Langston, P., Lester, E., Drury, J.: Modelling contra-flow in crowd dynamics dem simulation. Saf. Sci. 47(3), 395–404 (2009)

    Article  Google Scholar 

  3. Köster, G., Seitz, M., Treml, F., Hartmann, D., Klein, W.: On modelling the influence of group formations in a crowd. Contem. Soc. Sci. 6(3), 397–414 (2011)

    Article  Google Scholar 

  4. Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86, 046108 (2012)

    Article  Google Scholar 

  5. Hartmann, D.: Adaptive pedestrian dynamics based on geodesics. New J. Phys. 12, 043032 (2010)

    Article  Google Scholar 

  6. Köster, G., Hartmann, D., Klein, W.: Microscopic pedestrian simulations: from passenger exchange times to regional evacuation. In: Hu, B., Morasch, K., Pickl, S., Siegle, M. (eds.) Operations Research Proceedings 2010: Selected Papers of the Annual International Conference of the German Operations Research Society, pp. 571–576. Springer (2011)

    Google Scholar 

  7. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. App. 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  8. Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A 324(3–4), 689–697 (2003)

    Article  MATH  Google Scholar 

  9. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Physica A 373, 694–712 (2007)

    Article  Google Scholar 

  10. Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using proxemic floor field model. Physica A 391(1–2), 291–299 (2012)

    Article  Google Scholar 

  11. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  12. Chraibi, M.: Validated force-based modeling of pedestrian dynamics. Ph.D. thesis, Universität zu Köln (2012)

    Google Scholar 

  13. Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Phys. Rev. E 87(6), 063305 (2013)

    Article  Google Scholar 

  14. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 046111 (2010)

    Article  Google Scholar 

  15. Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of pedestrian dynamics. Netw. Heterogen. Media 6(3), 425–442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. von Sivers, I.: Numerische Methoden zur Optimierung der Schrittrichtung und -weite in einem Modell der Personenstromsimulation. Master’s thesis, Fernuniversität in Hagen (2013)

    Google Scholar 

  17. Dietrich, F.: An ode-based model for pedestrian motion and navigation. Bachelor’s thesis, Technische Universität München (2013)

    Google Scholar 

  18. RiMEA. Richtlinie für Mikroskopische Entfluchtungsanalysen - RiMEA. RiMEA e.V., 2.2.1 edn. (2009)

    Google Scholar 

  19. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. 25(3), 1160–1168 (2006). (SIGGRAPH 2006)

    Article  Google Scholar 

  20. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Pap. Proc. R. Soc. B: Biol. Sci. 276, 2755–2762 (2009)

    Article  Google Scholar 

  23. Weidmann, U.: Transporttechnik der Fussgänger, Schriftenreihe des IVT, vol. 90. Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau (IVT) ETH, Zürich, 2 edn. (1992)

    Google Scholar 

  24. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Nat. Acad. Sci. 108(17), 6884–6888 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Federal Ministry of Education and Research through the project MEPKA on mathematical characteristics of pedestrian stream models (17PNT028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella von Sivers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dietrich, F., Köster, G., Seitz, M., von Sivers, I. (2014). Bridging the Gap: From Cellular Automata to Differential Equation Models for Pedestrian Dynamics. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics