Skip to main content

Parallel Efficiency of an Adaptive, Dynamically Balanced Flow Solver

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

  • 1323 Accesses

Abstract

Computations in Fluid Dynamics require minimisation of time in which the result could be obtained. While parallel techniques allow for handling of large problems, it is the adaptivity that ensures that computational effort is focused on interesting regions in time and space. Parallel efficiency, in a domain decomposition based approach, strongly depends on partitioning quality. For adaptive simulation partitioning quality is lost due to the dynamic modification of the computational mesh. Maintaining high efficiency of parallelization requires rebalancing of the numerical load. This paper presents performance results of an adaptive and dynamically balanced in-house flow solver. The results indicate that the rebalancing technique might be used to remedy to the adverse effects of adaptivity on overall parallel performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alauzet, F., George, P.L., Mohammadi, B., Frey, P.J., Borouchaki, H.: Transient fixed point-based unstructured mesh adaptation. Int. J. Numer. Meth. Fluids 43, 729–745 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alauzet, F., Li, X., Seegyoung Seol, E., Shephard, M.S.: Parallel anisotropic 3D mesh adaptation by mesh modification. Eng. Comput. (Lond.) 21(3), 247–258 (2006)

    Article  Google Scholar 

  3. Castro-Dfaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh adaptation for flow simulation. Int. J. Numer. Meth. Fluids 25, 475–491 (1997)

    Article  Google Scholar 

  4. Deconinck, H., Sermeus, K., Abgrall, R.: Status of multidimensional upwind residual distribution schemes and applications in aeronautics. In: AIAA Conference Proceedings, pp. 2000–2328 (2000)

    Google Scholar 

  5. Devine, K.D., Boman, E.G., Heaphy, R.T., Hendrickson, B.A., Teresco, J.D., Faik, J., Flaherty, J.E., Gervasio, L.G.: New challenges in dynamic load balancing. Appl. Numer. Math. 52(2–3), 133–152 (2005). (ADAPT ’03: Conference on Adaptive Methods for Partial Differential Equations and Large-Scale Computation.)

    Article  MATH  MathSciNet  Google Scholar 

  6. Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for transient flows simulations. In: IMR, pp. 335–348 (2003)

    Google Scholar 

  7. Gepner, S., Majewski, J., Rokicki, J.: Dynamic load balancing for adaptive parallel flow problems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 61–69. Springer, Heidelberg (2010)

    Google Scholar 

  8. Gepner, S., Rokicki, J.: Dynamic load balancing for parallelization of adaptive algorithms. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H., Sørensen, K. (eds.) ADIGMA. NNFM, vol. 113, pp. 327–338. Springer, Heidelberg (2010)

    Google Scholar 

  9. Gepner, S., Rokicki, J.: Investigation of parallel efficiency of an adaptive flow solver. Procedia Comput. Sci. 1(1), 2673–2681 (2010). (ICCS 2010.)

    Article  Google Scholar 

  10. Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Proceedings of the Fifth Distributed Memory Computing Conference DMCC5 (1990)

    Google Scholar 

  11. Hendrickson, B., Devine, K.: Dynamic load balancing in computational mechanics. Comput. Methods Appl. Mech. Eng. 184(2–4), 485–500 (2000)

    Article  MATH  Google Scholar 

  12. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Parallel Comput. 26(12), 1519–1534 (2000). (Graph Partitioning and Parallel Computing.)

    Article  MATH  MathSciNet  Google Scholar 

  13. Majewski, J.: An anisotropic adaptation for simulation of compressible flows. Math. Model. Anal. 7, 127–134 (2002)

    MATH  Google Scholar 

  14. Majewski, J.: Anisotropic adaptation for flow simulations in complex geometries. In: 36th Lecture Series on Computational Fluid Dynamics/ADIGMA Course on HP-adaptive and HP-multigrid Methods. von Karman Institute for Fluid Dynamics (2009)

    Google Scholar 

  15. Majewski, J., Athanasiadis, A.: Anisotropic solution-adaptive technique applied to simulations of steady and unsteady compressible flows. In: Deconinck, H., Dick, E. (eds.) Computational Fluid Dynamics 2006 - Proceedings of the 4th International Conference on Computational Fluid Dynamics, ICCFD4, Ghent, Belgium, July 10–14, pp. 353–359. Springer, 2006

    Google Scholar 

  16. Park, Y.M., Kwon, O.J.: A parallel unstructured dynamic mesh adaptation algorithm for 3-d unsteady flows. Int. J. Numer. Meth. Fluids 48, 671–690 (2005)

    Article  MATH  Google Scholar 

  17. Rokicki, J., Żółtak, J., Drikakis, D., Majewski, J.: Parallel performance of overlapping mesh technique for compressible flows. Future Gener. Comput. Syst. 18(1), 3–15 (2001)

    Article  MATH  Google Scholar 

  18. Sermeus, K., Deconinck, H.: Solution of steady euler and navier-stokes equations using residual distribution schemes. In: 33rd Lecture Series on Computational Fluid Dynamics - Novel Methods for Solving Convection Dominated Systems (LS2003-05). von Karman Institute for Fluid Dynamics (2003)

    Google Scholar 

  19. Troyer, C., Baraldi, D., Kranzlmüller, D., Wilkening, H., Volkert, J.: Parallel grid adaptation and dynamic load balancing for a CFD solver. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 493–501. Springer, Heidelberg (2005)

    Google Scholar 

  20. Waltz, J.: Parallel adaptive refinement for unsteady flow calculations on 3d unstructured grids. Int. J. Numer. Meth. Fluids 46, 37–57 (2004). doi:10.1002/fld.674

    Article  MATH  Google Scholar 

  21. Zhu, Z., Wang, P., Tuo, S.: An adaptive solution of the 3-d euler equations on an unstructured grid. Acta Mech. 155, 215–231 (2002). doi:10.1007/BF01176244

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaw Gepner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gepner, S., Majewski, J., Rokicki, J. (2014). Parallel Efficiency of an Adaptive, Dynamically Balanced Flow Solver. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics