Skip to main content

Pulp Development

  • Chapter
  • First Online:
The Dental Pulp

Abstract

The first part of this chapter reviews the initial steps of tooth development, involving gene expression, transcription, and growth factors. After the cascade leading from the formation of dental placodes to buds, caps, and dental papilla, the dental follicle (or dental sac) contributes to the dental organ of deciduous and permanent teeth. Epithelio-mesenchymal interactions provide reciprocal and sequential exchanges of signals through the basement membrane and cell commitment during tooth morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kitamura C, Kimura K, Nakayama T, Terashita M. Temporal and spatial expression of c-jun and jun-B proto-oncogenes in pulp cells involved with reparative dentinogenesis after cavity preparation of rat molars. J Dent Res. 1999;78(2):673–80.

    Article  PubMed  Google Scholar 

  2. Mitsiadis TA, Fried K, Goridis C. Reactivation of Delta-Notch signaling after injury: complementary expression patterns of ligand and receptor in dental pulp. Exp Cell Res. 1999;246(2):312–8.

    Article  PubMed  Google Scholar 

  3. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5(7):499–508.

    Article  PubMed  Google Scholar 

  4. Soukup V, Epperlein HH, Horacek I, Cerny R. Dual epithelial origin of vertebrate oral teeth. Nature. 2008;455(7214):795–8.

    Article  PubMed  Google Scholar 

  5. Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 2009;7(2):e31.

    Article  PubMed  Google Scholar 

  6. Mandler M, Neubuser A. FGF signaling is necessary for the specification of the odontogenic mesenchyme. Dev Biol. 2001;240(2):548–59.

    Article  PubMed  Google Scholar 

  7. Rijli FM, Mark M, Lakkaraju S, Dierich A, Dolle P, Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993;75(7):1333–49.

    Article  PubMed  Google Scholar 

  8. Cobourne MT, Sharpe PT. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol. 2003;48(1):1–14.

    Article  PubMed  Google Scholar 

  9. McCollum MA, Sharpe PT. Developmental genetics and early hominid craniodental evolution. Bioessays. 2001;23(6):481–93.

    Article  PubMed  Google Scholar 

  10. McCollum M, Sharpe PT. Evolution and development of teeth. J Anat. 2001;199(Pt 1–2):153–9.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol. 2003;262(2):195–205.

    Article  PubMed  Google Scholar 

  12. Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125(2):161–9.

    PubMed  Google Scholar 

  13. Kettunen P, Karavanova I, Thesleff I. Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev Genet. 1998;22(4):374–85.

    Article  PubMed  Google Scholar 

  14. Trumpp A, Depew MJ, Rubenstein JL, Bishop JM, Martin GR. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 1999;13(23):3136–48.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000;127(22):4775–85.

    PubMed  Google Scholar 

  16. Hjalt TA, Semina EV, Amendt BA, Murray JC. The Pitx2 protein in mouse development. Dev Dyn. 2000;218(1):195–200.

    Article  PubMed  Google Scholar 

  17. Jackman WR, Draper BW, Stock DW. Fgf signaling is required for zebrafish tooth development. Dev Biol. 2004;274(1):139–57.

    Article  PubMed  Google Scholar 

  18. Mitsiadis TA, Regaudiat L, Gridley T. Role of the Notch signalling pathway in tooth morphogenesis. Arch Oral Biol. 2005;50(2):137–40.

    Article  PubMed  Google Scholar 

  19. Jarvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A. 2006;103(49):18627–32.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Chen S, Gluhak-Heinrich J, Martinez M, Li T, Wu Y, Chuang HH, Chen L, Dong J, Gay I, MacDougall M. Bone morphogenetic protein 2 mediates dentin sialophosphoprotein expression and odontoblast differentiation via NF-Y signaling. J Biol Chem. 2008;283(28):19359–70.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Klein OD, Lyons DB, Balooch G, Marshall GW, Basson MA, Peterka M, Boran T, Peterkova R, Martin GR. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development. 2008;135(2):377–85.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey EE, Atit R, Dlugosz AA, Millar SE. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 2008;313(1):210–24.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Chen J, Lan Y, Baek JA, Gao Y, Jiang R. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev Biol. 2009;334(1):174–85.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Jackman WR, Yoo JJ, Stock DW. Hedgehog signaling is required at multiple stages of zebrafish tooth development. BMC Dev Biol. 2010;10:119.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Liu F, Millar SE. Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res. 2010;89(4):318–30.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lohi M, Tucker AS, Sharpe PT. Expression of Axin2 indicates a role for canonical Wnt signaling in development of the crown and root during pre- and postnatal tooth development. Dev Dyn. 2010;239(1):160–7.

    PubMed  Google Scholar 

  27. Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development. 2010;137(18):3025–35.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Li J, Huang X, Xu X, Mayo J, Bringas Jr P, Jiang R, Wang S, Chai Y. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development. 2011;138(10): 1977–89.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Haara O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Aberg T, Jernvall J, Ornitz DM, Mikkola ML, Thesleff I. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development. 2012;139(17): 3189–99.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Thesleff I. Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Aust Dent J. 2013 doi: 10.1111/adj.12102.

  31. Chen Y, Bei M, Woo I, Satokata I, Maas R. Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development. 1996;122(10):3035–44.

    PubMed  Google Scholar 

  32. Mucchielli ML, Mitsiadis TA, Raffo S, Brunet JF, Proust JP, Goridis C. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol. 1997;189(2):275–84.

    Article  PubMed  Google Scholar 

  33. Neubuser A, Peters H, Balling R, Martin GR. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997;90(2):247–55.

    Article  PubMed  Google Scholar 

  34. Mitsiadis TA, Mucchielli ML, Raffo S, Proust JP, Koopman P, Goridis C. Expression of the transcription factors Otlx2, Barx1 and Sox9 during mouse odontogenesis. Eur J Oral Sci. 1998;106 Suppl 1:112–6.

    PubMed  Google Scholar 

  35. Tucker AS, Matthews KL, Sharpe PT. Transformation of tooth type induced by inhibition of BMP signaling. Science. 1998;282(5391):1136–8.

    Article  PubMed  Google Scholar 

  36. Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999;78(4):826–34.

    Article  PubMed  Google Scholar 

  37. Zhao Y, Guo YJ, Tomac AC, Taylor NR, Grinberg A, Lee EJ, Huang S, Westphal H. Isolated cleft palate in mice with a targeted mutation of the LIM homeobox gene lhx8. Proc Natl Acad Sci U S A. 1999;96(26): 15002–6.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development. 2000;127(2):403–12.

    PubMed  Google Scholar 

  39. Aberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, Ryoo HM, Thesleff I. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol. 2004;270(1):76–93.

    Article  PubMed  Google Scholar 

  40. Tucker AS, Headon DJ, Courtney JM, Overbeek P, Sharpe PT. The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Dev Biol. 2004;268(1):185–94.

    Article  PubMed  Google Scholar 

  41. Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M. Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem. 2005;280(33):29717–27.

    Article  PubMed  Google Scholar 

  42. Denaxa M, Sharpe PT, Pachnis V. The LIM homeodomain transcription factors Lhx6 and Lhx7 are key regulators of mammalian dentition. Dev Biol. 2009;333(2): 324–36.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Venugopalan SR, Li X, Amen MA, Florez S, Gutierrez D, Cao H, Wang J, Amendt BA. Hierarchical interactions of homeodomain and forkhead transcription factors in regulating odontogenic gene expression. J Biol Chem. 2011;286(24):21372–83.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sharpe PT. Homeobox genes and orofacial development. Connect Tissue Res. 1995;32(1–4):17–25.

    Article  PubMed  Google Scholar 

  45. Juuri E, Jussila M, Seidel K, Holmes S, Wu P, Richman J, Heikinheimo K, Chuong CM, Arnold K, Hochedlinger K, Klein O, Michon F, Thesleff I. Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development. 2013;140(7): 1424–32.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Michon F, Tummers M, Kyyronen M, Frilander MJ, Thesleff I. Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Dev Biol. 2010;340(2):355–68.

    Article  PubMed  Google Scholar 

  47. Jheon AH, Li CY, Wen T, Michon F, Klein OD. Expression of microRNAs in the stem cell niche of the adult mouse incisor. PLoS One. 2011;6(9):e24536.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Oommen S, Otsuka-Tanaka Y, Imam N, Kawasaki M, Kawasaki K, Jalani-Ghazani F, Anderegg A, Awatramani R, Hindges R, Sharpe PT, Ohazama A. Distinct roles of MicroRNAs in epithelium and mesenchyme during tooth development. Dev Dyn. 2012;241(9):1465–72.

    Article  PubMed  Google Scholar 

  49. Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci. 2003;116(Pt 9):1647–8.

    Article  PubMed  Google Scholar 

  50. Thesleff I. Developmental biology and building a tooth. Quintessence Int. 2003;34(8):613–20.

    PubMed  Google Scholar 

  51. Goldberg M. La dent normale et pathologique. Bruxelles: De Boeck University; 2001.

    Google Scholar 

  52. Nanci A. Ten cate’s oral histology. Development, structure, and function. Philadelphia: Mosby Elsevier; 2008.

    Google Scholar 

  53. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92(1):19–29.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Goldberg DDS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dimitrova-Nakov, S., Goldberg, M. (2014). Pulp Development. In: Goldberg, M. (eds) The Dental Pulp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55160-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55160-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55159-8

  • Online ISBN: 978-3-642-55160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics