Skip to main content

Systematic Modeling of Land Use Impacts on Surface Climate

  • Chapter
  • First Online:
Land Use Impacts on Climate

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

There have been tremendous changes in global land use pattern in the past 50 years, which has directly or indirectly exerted significant influence on global climate changes. Quantitative analysis for the impacts of land use and cover change (LUCC) on surface climate is one of the core scientific issues to quantitatively analyze impacts of LUCC on surface climate so as to scientifically understand the influence of human activities on climate changes. This chapter comprehensively analyzes the primary scientific issues about the impacts of LUCC on surface climate and reviews the progress in relevant researches. Firstly, it introduces the influence mechanism of LUCC on regional surface climate, and reviews the progress in researches on biogeophysical process and biogeochemical process. Then the model simulation of effects of LUCC on surface climate are introduced, and the development from global climate model to regional climate model and the integration of improved land surface model and regional climate model are reviewed in detail. Finally, this chapter discusses the application of regional climate models in development and management of agricultural land and urban land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nat Geosci 4(8):514–518

    Google Scholar 

  • Bathiany S, Claussen M, Brovkin V, Raddatz T, Gayler V (2010) Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosci Discuss 7(1):387–428

    Google Scholar 

  • Betts AK, Ball JH, Beljaars A, Miller MJ, Viterbo PA (1996) The land surface‐atmosphere interaction: A review based on observational and global modeling perspectives. J Geophys Res Atmos (1984–2012) 101(D3):7209–7225

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Google Scholar 

  • Bonan GB, Pollard D (1992) Vegetation on global climate. Nature 359:22

    Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang Z-L (2002) The land surface climatology of the community land model coupled to the NCAR community climate model*. J Clim 15(22):3123–3149

    Google Scholar 

  • Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8(6):509–517

    Google Scholar 

  • Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre M, Matthews H, Ramankutty N, Schaeffer M, Sokolov A (2006) Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 26(6):587–600

    Google Scholar 

  • Brovkin V, Boysen L, Raddatz T, Gayler V, Loew A, Claussen M (2013) Evaluation of vegetation cover and land‐surface albedo in MPI‐ESM CMIP5 simulations. J Adv Model Earth Syst 5(1):48–57

    Google Scholar 

  • Chapin F, Sturm M, Serreze M, Mcfadden J, Key J, Lloyd A, Mcguire A, Rupp T, Lynch A, Schimel J (2005). Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660

    Google Scholar 

  • Charney J, Stone PH, Quirk WJ (1975) Drought in the Sahara: a biogeophysical feedback mechanism. Science 187:434–435

    Google Scholar 

  • Copeland JH, Pielke RA, Kittel TG (1996) Potential climatic impacts of vegetation change: a regional modeling study. J Geophys Res Atmos (1984–2012) 101(D3):7409–7418

    Google Scholar 

  • Davin EL, de Noblet-Ducoudré N (2010) Climatic impact of global-scale deforestation: radiative versus nonradiative processes. J Clim 23(1):97–112

    Google Scholar 

  • Defries RS, Bounoua L, Collatz GJ (2002) Human modification of the landscape and surface climate in the next fifty years. Glob Change Biol 8(5):438–458

    Google Scholar 

  • Degu AM, Hossain F, Niyogi D, Pielke R, Shepherd JM, Voisin N, Chronis T (2011) The influence of large dams on surrounding climate and precipitation patterns. Geophys Res Lett 38(4):L04405, doi:10.1029/2010GL046482

  • Dessler A (2010) A determination of the cloud feedback from climate variations over the past decade. Science 330(6010):1523–1527

    Google Scholar 

  • Diffenbaugh NS (2009) Influence of modern land cover on the climate of the United States. Clim Dyn 33(7–8):945–958

    Google Scholar 

  • Dirmeyer PA, Shukla J (1994) Albedo as a modulator of climate response to tropical deforestation. J Geophys Res 99(D10):20863–20877

    Google Scholar 

  • Douglas EM, Niyogi D, Frolking S, Yeluripati J, Pielke RA, Niyogi N, Vörösmarty C, Mohanty U (2006) Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys Res Lett 33(14):L14403, doi:10.1029/2006GL026550

  • Douglas E, Beltrán-Przekurat A, Niyogi D, Pielke Sr R, Vörösmarty C (2009) The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation—A mesoscale modeling perspective. Glob Planet Change 67(1):117–128

    Google Scholar 

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292(5525):2320–2322

    Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

    Google Scholar 

  • Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309(5734):570–574

    Google Scholar 

  • Friedlingstein P, Prentice I (2010) Carbon–climate feedbacks: a review of model and observation based estimates. Curr Opin Environ Sustain 2(4):251–257

    Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I (2006). Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J Clim 19(14):3337–3353

    Google Scholar 

  • Ge J, Qi J, Lofgren BM, Moore N, Torbick N, Olson JM (2007) Impacts of land use/cover classification accuracy on regional climate simulations. J Geophys Res Atmos 112(D5):D05107, doi:10.1029/2006JD007404

  • Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci 108(11):4307–4312

    Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–292

    Google Scholar 

  • Himiyama Y, Bicik I (2012) Land use changes in selected regions in the world. Hokkaido University of Education, Asahikawa

    Google Scholar 

  • Houldcroft CJ, Grey WM, Barnsley M, Taylor CM, Los SO, North PR (2009) New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J Hydrometeorol 10(1):183–198

    Google Scholar 

  • House JI, Colin Prentice I, Le Quéré C (2002) Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob Change Biol 8(11):1047–1052

    Google Scholar 

  • Kattenberg A, Giorgi F, Grassl H, Meehl G, Mitchell J, Stouffer RT, Tokioka T Weaver A, Wigley T (1996) Climate models—projections of future climate. Climate Change 1995: the science of climate change. contribution of working group I to the second assessment report of the intergovernmental panel on climate change, pp 285–357

    Google Scholar 

  • Klein Goldewijk K, Beusen A, van Drecht G, de Vos M (2011) The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years. Glob Ecol Biogeogr 20(1):73–86

    Google Scholar 

  • Kueppers LM, Snyder MA (2012) Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Clim Dyn 38(5–6):1017–1029

    Google Scholar 

  • Kueppers LM, Snyder MA, Sloan LC (2007) Irrigation cooling effect: regional climate forcing by land‐use change. Geophys Res Lett 34(3):L03703

    Google Scholar 

  • Kueppers LM, Snyder MA, Sloan LC, Cayan D, Jin J, Kanamaru H, Kanamitsu M, Miller NL, Tyree M, Du H (2008) Seasonal temperature responses to land-use change in the western United States. Glob Planet Change 60(3):250–264

    Google Scholar 

  • Lambert FH, Webb MJ, Joshi MM (2011) The relationship between land-ocean surface temperature contrast and radiative forcing. J Clim 24(13):3239–3256

    Google Scholar 

  • Lambin EF, Geist HJ (2006) Land use and land cover change: Local processes and global impacts. Springer, New York

    Google Scholar 

  • Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens Environ 115(12):3249–3263

    Google Scholar 

  • Lobell D, Bala G, Mirin A, Phillips T, Maxwell R, Rotman D (2009) Regional differences in the influence of irrigation on climate. J Clim 22(8):2248–2255

    Google Scholar 

  • Lynch A, Chapin Iii F, Hinzman L, Wu W, Lilly E, Vourlitis G, Kim E (1999) Surface energy balance on the arctic tundra: measurements and models. J Clim 12(8):2585–2606

    Google Scholar 

  • Malhi Y, Aragão LE, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, Mcsweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci 106(49):20610–20615

    Google Scholar 

  • Meiyappan P, Jain AK (2012) Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front Earth Sci 6(2):122–139

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Google Scholar 

  • Murata A, Sasaki H, Hanafusa M, Kurihara K (2012) Estimation of urban heat island intensity using biases in surface air temperature simulated by a nonhydrostatic regional climate model. Theor Appl Climatol 122(1–2):351–361

    Google Scholar 

  • Oyama MD, Nobre CA (2004) Climatic consequences of a large-scale desertification in northeast Brazil: a GCM simulation study. J Clim 17(16):3203–3213

    Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard R, Ciais P (2001) Consistent land-and atmosphere-based US carbon sink estimates. Science 292(5525):2316–2320

    Google Scholar 

  • Pachauri R, Reisinger A (2007) IPCC fourth assessment report. IPCC, Geneva

    Google Scholar 

  • Phillips OL, Aragão LE, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347

    Article  Google Scholar 

  • Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng X, Denning AS (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol 4(5):461–475

    Google Scholar 

  • Pielke R, Adegoke J, Beltran-Przekurat A, Hiemstra C, Lin J, Nair U, Niyogi D, Nobis T (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus B 59(3):587–601

    Google Scholar 

  • Ran Y, Li X, Lu L, Li Z (2012) Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. Int J Geogr Inf Sci 26(1):169–191

    Google Scholar 

  • Salmun H, Molod A (2006) Progress in modeling the impact of land cover change on the global climate. Prog Phys Geogr 30(6):737–749

    Google Scholar 

  • Salvati L, Bajocco S (2011) Land sensitivity to desertification across Italy: past, present, and future. Appl Geogr 31(1):223–231

    Google Scholar 

  • Sellers PJ, Tucker CJ, Collatz GJ, Los SO, Justice CO, Dazlich DA, Randall DA (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J Clim 9(4):706–737

    Google Scholar 

  • Sellers P, Dickinson R, Randall D, Betts A, Hall F, Berry J, Collatz G, Denning A, Mooney H, Nobre C (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509

    Google Scholar 

  • Shukla J, Mintz Y (1982) Influence of land-surface evapotranspiration on the Earth’s climate. Science 215(4539):1498–1501

    Google Scholar 

  • Shukla J, Nobre C, Sellers P (1990) Amazon deforestation and climate change. Science (Washington) 247(4948):1322–1325

    Google Scholar 

  • Singh RB, Nath R (2012) Remote sensing, GIS and micrometeorology for monitoring and predicting urban heat islands in Kolkata mega city. Ann NAGI 32(1):17–39

    Google Scholar 

  • Smith P, Powlson D, Glendining M, Smith J (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Change Biol 3(1):67–79

    Google Scholar 

  • Spracklen DV, Bonn B, Carslaw KS (2008) Boreal forests, aerosols and the impacts on clouds and climate. Philos Trans R Soc A Math Phys Eng Sci 366(1885):4613–4626

    Google Scholar 

  • Stone Jr B (2009) Land use as climate change mitigation. Environ Sci Technol 43(24):9052–9056

    Google Scholar 

  • Wickham JD, Wade TG, Riitters KH (2012) Comparison of cropland and forest surface temperatures across the conterminous United States. Agric For Meteorol 166:137–143

    Google Scholar 

  • Woldemichael AT, Hossain F, Pielke Sr R, Beltrán-Przekurat A (2012) Understanding the impact of dam-triggered land use/land cover change on the modification of extreme precipitation. Water Resour Res 48(9):W09547

    Google Scholar 

  • Wong JKW, Lau LS-K (2013) From the ‘urban heat island’to the ‘green island’? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat Int 39:25–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzheng Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deng, X., Güneralp, B., Su, H. (2014). Systematic Modeling of Land Use Impacts on Surface Climate. In: Deng, X., Güneralp, B., Zhan, J., Su, H. (eds) Land Use Impacts on Climate. Springer Geography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54876-5_1

Download citation

Publish with us

Policies and ethics