Skip to main content

Part of the book series: Springer Series in Vision Research ((SSVR,volume 2))

Abstract

Humans are fascinated by the colour vision, colour signals and ‘dress codes’ of other animals as we can see colour. This property of light may be useful for increasing the contrast of objects during foraging, defence, camouflage and sexual communication. New research, largely from the last decade, now suggests that polarisation is a quality of light also used in signalling and may contain information at least as rich as colour. As many of the chapters in this book detail, polarisation in animals is often associated with navigation, habitat choice and other tasks that require large-field processing. That is, a wide area of the light field, such as the celestial hemisphere, is sampled from. Polarisation vision that recognises and extracts information from objects is most likely confined to processing through small numbers of receptors. This chapter examines the latest evidence on polarised signals from animals and their environments, including both linear and circular polarisations. Both aquatic and terrestrial examples are detailed, but with emphasis on life underwater as it is here that many recent discoveries have been made. Behaviour relative to signals is described where known, and suggestions are given as to how these signals are received and processed by the visual system. Camouflage as well as signalling in this light domain is also considered, with the inevitable conclusion for this new field that we need to know more before solid conclusions can be drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arwin H, Magnusson R, Landin J, Järrendahl K (2012) Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson. Philos Mag 92:1583–1599

    CAS  Google Scholar 

  • Baird E, Warrant EJ, Ribi W (2013) The unusual ocellar morphology of the orchid bee. Third international conference on invertebrate vision, proceedings, 1–8 August 2013, Lund, Sweden

    Google Scholar 

  • Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vis Res 17:1019–1028

    PubMed  CAS  Google Scholar 

  • Bernáth B, Szedenics G, Wildermuth H, Horváth G (2002) How can dragonflies discern bright and dark waters from a distance? The degree of polarization of reflected light as a possible cue for dragonfly habitat selection. Freshw Biol 47:1707–1720

    Google Scholar 

  • Blahó M, Egri Á, Báhidszki L, Kriska G, Hegedüs R, Åkesson S, Horváth G (2012a) Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns. PLoS One 7(8):e41138. doi:10.1371/journal.pone.0041138 + supporting information

  • Blahó M, Egri Á, Hegedüs R, Jósvai J, Tóth M, Kertész K, Biró LP, Kriska G, Horváth G (2012b) No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle. Physiol Behav 105:1067–1075

    PubMed  Google Scholar 

  • Blahó M, Egri Á, Száz D, Kriska G, Åkesson S, Horváth G (2013) Stripes disrupt odour attractiveness to biting horseflies: battle between ammonia, CO2, and colour pattern for dominance in the sensory systems of host-seeking tabanids. Physiol Behav 119:168–174

    PubMed  Google Scholar 

  • Boal JG (1997) Female choice of males in cuttlefish (Mollusca: Cephalopoda). Behaviour 134:975–988

    Google Scholar 

  • Boal JG, Shashar N, Grable MM, Vaughan KH, Loew ER, Hanlon RT (2004) Behavioral evidence for intraspecific signaling with achromatic and polarized light by cuttlefish (Mollusca: Cephalopoda). Behaviour 141:837–861

    Google Scholar 

  • Brady PC, Cummings ME (2010) Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa. Am Nat 175:614–620

    PubMed  Google Scholar 

  • Brady PC, Travis KA, Maginnis T, Cummings ME (2013) Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage. Proc Natl Acad Sci 110:9764–9769

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cartron L, Darmaillacq AS, Jozet-Alves C, Shashar N, Dickel L (2012) Cuttlefish rely on both polarized light and landmarks for orientation. Anim Cogn 15:591–596

    PubMed  Google Scholar 

  • Caveney S (1971) Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid. Proc R Soc Lond B 178:205–225

    PubMed  CAS  Google Scholar 

  • Chiou TH, Cronin TW, Caldwell RL, Marshall J (2005) Biological polarized light reflectors in stomatopod crustacean. Proc SPIE 5888:1–9

    Google Scholar 

  • Chiou TH, Mäthger LM, Hanlon RT, Cronin TW (2007) Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalis L.). J Exp Biol 210:3624–3635

    PubMed  Google Scholar 

  • Chiou TH, Caldwell RL, Hanlon RT, Cronin TW (2008a) Fine structure and optical properties of biological polarizers in crustaceans and cephalopods. Proc SPIE 6972:1–10

    Google Scholar 

  • Chiou TH, Kleinlogel S, Cronin T, Caldwell R, Loeffler B, Siddiqi A, Goldizen A, Marshall J (2008b) Circular polarization vision in a stomatopod crustacean. Curr Biol 18:429–434

    PubMed  CAS  Google Scholar 

  • Chiou TH, Marshall NJ, Caldwell RL, Cronin TW (2011) Changes in light-reflecting properties of signalling appendages alter mate choice behaviour in a stomatopod crustacean Haptosquilla trispinosa. Mar Freshw Behav Physiol 44:1–11

    Google Scholar 

  • Chiou TH, Place AR, Caldwell RL, Marshall NJ, Cronin TW (2012) A novel function for a carotenoid: astaxanthin used as a polarizer for visual signalling in a mantis shrimp. J Exp Biol 215:584–589

    PubMed  CAS  Google Scholar 

  • Cronin TW, Shashar N (2001) The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J Exp Biol 204:2461–2467

    PubMed  CAS  Google Scholar 

  • Cronin TW, Marshall NJ, Caldwell RL (2000) Spectral tuning and the visual ecology of mantis shrimps. Philos Trans R Soc Lond B 355:1263–1267

    CAS  Google Scholar 

  • Cronin TW, Shashar N, Caldwell RL, Marshall J, Cheroske AG, Chiou TH (2003) Polarization signals in the marine environment. Polarizat Sci Remote Sens 5158:85–92

    Google Scholar 

  • Cronin TW, Chiou TH, Caldwell RL, Roberts N, Marshall J (2009) Polarization signals in mantis shrimps. In: Shaw JA, Tyo JS (eds) Proceedings of SPIE 7461:1–12 (Polarization Science and Remote Sensing)

    Google Scholar 

  • Dacke M, Nilsson DE, Warrant EJ, Blest AD, Land MF, O'Carroll DC (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401:470–473

    CAS  Google Scholar 

  • Dacke M, Byrne M, Smolka J, Warrant E, Baird E (2013) Dung beetles ignore landmarks for straight-line orientation. J Comp Physiol A 199:17–23

    Google Scholar 

  • Denton EJ, Nicol JAC (1965a) Reflexion of light by external surfaces of the herring, Clupea harengus. J Mar Biol Assoc UK 45:711–738

    Google Scholar 

  • Denton EJ, Nicol JAC (1965b) Studies on reflexion of light from silvery surfaces of fishes, with special reference to the bleak, Alburnus alburnus. J Mar Biol Assoc UK 45:683–703

    Google Scholar 

  • Douglas JM, Cronin TW, Chiou TH, Dominy NJ (2007) Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae). J Exp Biol 210:788–799

    PubMed  Google Scholar 

  • Egri Á, Blahó M, Kriska G, Farkas R, Gyurkovszky M, Åkesson S, Horváth G (2012a) Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes. J Exp Biol 215:736–745 + electronic supplement

    Google Scholar 

  • Egri Á, Blahó M, Sándor A, Kriska G, Gyurkovszky M, Farkas R, Horváth G (2012b) New kind of polarotaxis governed by degree of polarization: Attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften 99:407–416 + electronic supplement

    Google Scholar 

  • Foster JJ, Sharkey CR, Whitney HM, Roberts NW, Partridge JC (2013) Bees, flowers and polarization. Third international conference on invertebrate vision, proceedings, 1–8 August 2013, Lund, Sweden

    Google Scholar 

  • Fox DL (1976) Animal biochromes and structural colours: physical, chemical, distributional and physiological features, 2nd edn. University of California Press, Berkeley

    Google Scholar 

  • Fox HM, Vevers G (1960) The nature of animal colours. Sidgwick and Jackson, London

    Google Scholar 

  • Frantsevich L, Govardovski V, Gribakin F, Nikolajev G, Pichka V, Polanovsky A, Shevchenko V, Zolotov V (1977) Astroorientation in Lethrus (Coleoptera, Scarabaeidae). J Comp Physiol 121:253–271

    Google Scholar 

  • Gokan N, Meyer-Rochow VB (1984) Fine-structure of the compound eye of the buprestid beetle Curis caloptera (Coleoptera, Buprestidae). Z Mikrosk Anat Forsch 98:17–35

    PubMed  CAS  Google Scholar 

  • Goldstein DH (2006) Polarization properties of Scarabaeidae. Appl Opt 45:7944–7950

    PubMed  Google Scholar 

  • Gordon WC (1977) Microvillar orientation in the retina of the nymphalid butterfly. Zeitschrift für Naturforschung C 32:662–664

    Google Scholar 

  • Gruev V, Perkins R, York T (2010) CCD polarization imaging sensor with aluminum nanowire optical filters. Opt Express 18:19087–19094

    PubMed  CAS  Google Scholar 

  • Hanlon RT (1982) The functional organisation of chromatophores and iridescent cells in the body patterning of Loligo plei (Cephalopoda: Myopsida). Malacologia 23:89–119

    Google Scholar 

  • Hanlon RT, Messenger JB (1988) Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Philos Trans R Soc Lond B 320:437–487

    Google Scholar 

  • Hawryshyn CW (1992) Polarization vision in fish. Am Sci 80:164–175

    Google Scholar 

  • Hecht E (1998) Optics. Addison-Wesley, Reading, MA

    Google Scholar 

  • Hegedüs R, Horváth G (2004a) How and why are uniformly polarization-sensitive retinae subject to polarization-related artefacts? Correction of some errors in the theory of polarization-induced false colours. J Theor Biol 230:77–87

    PubMed  Google Scholar 

  • Hegedüs R, Horváth G (2004b) Polarizational colours could help polarization-dependent colour vision systems to discriminate between shiny and matt surfaces, but cannot unambiguously code surface orientation. Vis Res 44:2337–2348

    PubMed  Google Scholar 

  • Hegedüs R, Szél G, Horváth G (2006) Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae). Vis Res 46:2786–2797

    PubMed  Google Scholar 

  • Hemmi JM, Marshall J, Pix W, Vorobyev M, Zeil J (2006) The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. J Exp Biol 209:4140–4153

    PubMed  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision—polarization patterns in nature. Springer, Heidelberg

    Google Scholar 

  • Horváth G, Zeil J (1996) Kuwait oil lakes as insect traps. Nature 379:303–304

    Google Scholar 

  • Horváth G, Gál J, Wehner R (1997) Why are water-seeking insects not attracted by mirages? The polarization pattern of mirages. Naturwissenschaften 84:300–303

    Google Scholar 

  • Horváth G, Bernáth B, Molnár G (1998) Dragonflies find crude oil visually more attractive than water: multiple-choice experiments on dragonfly polarotaxis. Naturwissenschaften 85:292–297

    Google Scholar 

  • Horváth G, Gál J, Labhart T, Wehner R (2002) Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies. J Exp Biol 205: 3281–3298 + cover picture

    Google Scholar 

  • Horváth G, Malik P, Kriska G, Wildermuth H (2007) Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshw Biol 52:1700–1709

    Google Scholar 

  • Horváth G, Majer J, Horváth L, Szivák I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100

    PubMed  Google Scholar 

  • Horváth G, Kriska G, Malik P, Robertson B (2009) Polarized light pollution: a new kind of ecological photopollution. Front Ecol Environ 7:317–325

    Google Scholar 

  • Horváth G, Blahó M, Kriska G, Hegedüs R, Gerics B, Farkas R, Åkesson S (2010) An unexpected advantage of whiteness in horses: the most horsefly-proof horse has a depolarizing white coat. Proc R Soc B 277:1643–1650

    PubMed  PubMed Central  Google Scholar 

  • How MJ, Marshall NJ (2014b) Polarization distance: a framework for modelling object detection by polarization vision systems. Proc R Soc B Biol Sci 281(1776):20131632

    Google Scholar 

  • How M, Zeil J, Hemmi J (2007) Differences in context and function of two distinct waving displays in the fiddler crab, Uca perplexa (Decapoda: Ocypodidae). Behav Ecol Sociobiol 62:137–148

    Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier oceanography series. Elsevier, Amsterdam

    Google Scholar 

  • Jewell SA, Vukusic P, Roberts NW (2007) Circularly polarized colour reflection from helicoidal structures in the beetle Plusiotis boucardi. New J Phys 9:1367–2630

    Google Scholar 

  • Johnsen S, Marshall NJ (2012) Through the looking glass: are silvery fish safe from viewers with polarization vision? Integr Comp Biol 52:E87

    Google Scholar 

  • Johnsen S, Marshall NJ, Widder EA (2011) Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton. Philos Trans R Soc B 366:655–670

    Google Scholar 

  • Jordan TM, Partridge JC, Roberts NW (2012) Non-polarizing broadband multilayer reflectors in fish. Nat Photonics 6:759–763

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kelber A (1999) Why ‘false’ colours are seen by butterflies. Nature 402:251

    PubMed  CAS  Google Scholar 

  • Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480

    PubMed  CAS  Google Scholar 

  • Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision—behavioural tests and physiological concepts. Biol Rev 78:81–118

    PubMed  Google Scholar 

  • Kinoshita M, Pfeiffer K, Homberg U (2007) Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J Exp Biol 210:1350–1361

    PubMed  Google Scholar 

  • Kinoshita M, Takahashi Y, Arikawa K (2008) Simultaneous color contrast in the foraging swallowtail butterfly, Papilio xuthus. J Exp Biol 211:3504–3511

    PubMed  Google Scholar 

  • Kriska G, Bernáth B, Farkas R, Horváth G (2009) Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). J Insect Physiol 55:1167–1173

    PubMed  CAS  Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybees compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30

    Google Scholar 

  • Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437

    Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    PubMed  CAS  Google Scholar 

  • Labhart T, Nilsson DE (1995) The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J Comp Physiol A 176:437–453

    Google Scholar 

  • Labhart T, Meyer EP, Schenker L (1992) Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Cell Tissue Res 268:419–429

    PubMed  CAS  Google Scholar 

  • Land MF (1993) Chasing and pursuit in the dolichopodid fly Poecilobothrus nobilitatus. J Comp Physiol A 173:605–613

    Google Scholar 

  • Laughlin S, Mcginness S (1978) Structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res 188:427–447

    PubMed  CAS  Google Scholar 

  • Li DQ, Lim MLM, Land MF (2007) Sex-specific UV and fluorescence signals in jumping spiders. Science 315:481

    PubMed  Google Scholar 

  • Lowrey S, Silva LD, Hodgkinson I, Leader J (2007) Observation and modelling of polarized light from scarab beetles. J Opt Soc Am A 24:2418–2425

    Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  • Maida TM (1977) Microvillar orientation in retina of a pierid butterfly. Z Naturforsch C 32:660–661

    Google Scholar 

  • Marshall NJ (2000a) Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos Trans R Soc Lond B 355:1243–1248

    CAS  Google Scholar 

  • Marshall NJ (2000b) The visual ecology of reef fish colours. In: Espmark Y, Amundsen T, Rosenquist G (eds) Animal signals: signalling and signal design in animal communication. Tapier, Trondheim, pp 83–120

    Google Scholar 

  • Marshall NJ, Messenger JB (1996) Colour-blind camouflage. Nature 382:408–409

    CAS  Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda) 1. Compound eye structure—the detection of polarized light. Philos Trans R Soc Lond B 334:33–56

    Google Scholar 

  • Marshall J, Cronin TW, Shashar N, Land M (1999) Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr Biol 9:755–758

    PubMed  CAS  Google Scholar 

  • Mäthger LM, Denton EJ (2001) Reflective properties of iridophores and fluorescent ‘eyespots’ in the loliginid squid Alloteuthis subulata and Loligo vulgaris. J Exp Biol 204:2103–2118

    PubMed  Google Scholar 

  • Mäthger L, Hanlon R (2007) Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res 329:179–186

    PubMed  Google Scholar 

  • Mäthger LM, Barbosa A, Miner S, Hanlon RT (2006) Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vis Res 46:1746–1753

    PubMed  Google Scholar 

  • Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT (2009a) Mechanisms and behavioural functions of structural coloration in cephalopods. J R Soc Interface 6:S149–S163

    PubMed  PubMed Central  Google Scholar 

  • Mäthger LM, Shashar N, Hanlon RT (2009b) Do cephalopods communicate using polarized light reflections from their skin? J Exp Biol 212:2133–2140

    PubMed  Google Scholar 

  • Mäthger LM, Bell GRR, Kuzirian AM, Allen JJ, Hanlon RT (2012) How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings? J Exp Biol 215:3752–3757

    PubMed  Google Scholar 

  • Messenger JB (1977) Evidence that Octopus is colour blind. J Exp Biol 70:49–55

    Google Scholar 

  • Michelson AA (1911) On the metallic colouring in birds and insects. Philos Mag Lond 21:554–567

    CAS  Google Scholar 

  • Moody MF, Parriss JR (1961) The discrimination of polarized light by octopus: a behavioural and morphological study. Zeitschrift für vergleichende Physiologie 44:268–291

    Google Scholar 

  • Muheim R, Phillips JB, Deutschlander ME (2009) White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration. J Exp Biol 212:3466–3472

    PubMed  Google Scholar 

  • Neville AC, Caveney S (1969) Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals. Biol Rev Camb Philos Soc 44:531–562

    PubMed  CAS  Google Scholar 

  • Neville AC, Luke BM (1971) Form optical activity in crustacean cuticle. J Insect Physiol 17:519–522

    Google Scholar 

  • Noh H, Liew SF, Saranathan V, Prum RO, Mochrie SGJ, Dufresne ER, Cao H (2010) Double scattering of light from biophotonic nanostructures with short-range order. Opt Express 18:11942–11948

    PubMed  Google Scholar 

  • Parker AR (1999) Invertebrate structural colours. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, New York, pp 65–90

    Google Scholar 

  • Pignatelli V, Temple SE, Chiou TH, Roberts NW, Collin SP, Marshall NJ (2011) Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Philos Trans R Soc B 366:734–741

    Google Scholar 

  • Prum (1999) The optics of feather color. Biophotonics International 1999 March/April

    Google Scholar 

  • Prum RO, Cole JA, Torres RH (2004) Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering. J Exp Biol 207:3999–4009

    PubMed  Google Scholar 

  • Pye JD (2010) The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera). Biol J Linn Soc 100:585–596

    Google Scholar 

  • Reppert SM, Zhu H, White RH (2004) Polarized light helps monarch butterflies navigate. Curr Biol 14:155–158

    PubMed  CAS  Google Scholar 

  • Roberts NW, Chiou TH, Marshall NJ, Cronin TW (2009) A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nat Photonics 3:641–644

    CAS  Google Scholar 

  • Saidel WM, Lettvin JY, Macnichol EF (1983) Processing of polarized light by squid photoreceptors. Nature 304:534–536

    PubMed  CAS  Google Scholar 

  • Saidel WM, Shashar N, Schmolesky MT, Hanlon RT (2005) Discriminative responses of squid (Loligo pealeii) photoreceptors to polarized light. Comp Biochem Phys A 142:340–346

    Google Scholar 

  • Schwind R (1984a) Evidence for true polarization vision based on a 2-channel analyzer system in the eye of the water bug, Notonecta glauca. J Comp Physiol 154:53–57

    Google Scholar 

  • Schwind R (1984b) The plunge reaction of the backswimmer Notonecta glauca. J Comp Physiol 155:319–321

    Google Scholar 

  • Sharma V, Crne M, Park JO, Srinivasarao M (2009) Structural origin of circularly polarized iridescence in jeweled beetles. Science 325:449–451

    PubMed  CAS  Google Scholar 

  • Shashar N, Rutledge PS, Cronin TW (1996) Polarization vision in cuttlefish: a concealed communication channel? J Exp Biol 199:2077–2084

    PubMed  Google Scholar 

  • Shashar N, Hanlon RT, Petz AD (1998) Polarization vision helps detect transparent prey. Nature 393:222–223

    CAS  Google Scholar 

  • Shashar N, Hagan R, Boal JG, Hanlon RT (2000) Cuttlefish use polarization sensitivity in predation on silvery fish. Vis Res 40:71–75

    PubMed  CAS  Google Scholar 

  • Shashar N, Sabbah S, Cronin TW (2004) Transmission of linearly polarized light in seawater: implications for polarization signaling. J Exp Biol 207:3619–3628

    PubMed  Google Scholar 

  • Stavenga DG, Kinoshita M, Yang EC, Arikawa K (2001) Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften 88:477–481

    PubMed  CAS  Google Scholar 

  • Stavenga DG, Wilts BD, Leertouwer HL (2009) Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J R Soc Interface 6:S185–S192

    PubMed  PubMed Central  Google Scholar 

  • Stavenga DG, Giraldo MA, Leertouwer HL (2010) Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane. J Exp Biol 213:1731–1739

    PubMed  Google Scholar 

  • Stavenga DG, Leertouwer HL, Marshall NJ, Osorio D (2011a) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc B 278:2098–2104

    PubMed  PubMed Central  Google Scholar 

  • Stavenga DG, Wilts BD, Leertouwer HL, Hariyama T (2011b) Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima. Philos Trans R Soc B 366:709–723

    Google Scholar 

  • Stavenga DG, Matsushita A, Arikawa K, Leertouwer HL, Wilts BD (2012) Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors. J Exp Biol 215:657–662

    PubMed  Google Scholar 

  • Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Philos Trans R Soc B 364:423–427

    Google Scholar 

  • Sweeney A, Jiggins C, Johnsen S (2003) Insect communication: polarized light as a butterfly mating signal. Nature 423:31–32

    PubMed  CAS  Google Scholar 

  • Talbot CM, Marshall J (2010) Polarization sensitivity in two species of cuttlefish—Sepia plangon (Gray 1849) and Sepia mestus (Gray 1849)—demonstrated with polarized optomotor stimuli. J Exp Biol 213:3364–3370

    PubMed  Google Scholar 

  • Temple SE, Pignatelli V, Cook T, How MJ, Chiou TH, Roberts NW, Marshall NJ (2012) High-resolution polarisation vision in a cuttlefish. Curr Biol 22:R121–R122

    PubMed  CAS  Google Scholar 

  • Trujillo-Cenoz O, Bernard GD (1972) Some aspects of the retinal organisation of Sympyncus lineatus Loew (Diptera, Dolichopodidae). J Ultrastruct Res 38:149–160

    PubMed  CAS  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B 265:351–358

    CAS  Google Scholar 

  • Vukusic P, Hooper I (2005) Directionally controlled fluorescence emission in butterflies. Science 310:1151

    PubMed  CAS  Google Scholar 

  • Vukusic P, Sambles JR (2004) Photonic structures in biology. Nature 429:680

    CAS  Google Scholar 

  • Vukusic P, Stavenga DG (2009) Physical methods for investigating structural colours in biological systems. J R Soc Interface 6:S133–S148

    PubMed  PubMed Central  Google Scholar 

  • Vukusic P, Sambles JR, Ghiradella H (2000a) Optical classification of microstructure in butterfly wing-scales. Photon Sci News 6:61–66

    Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR (2000b) Structural colour: colour mixing in wing scales of a butterfly. Nature 404:457

    PubMed  CAS  Google Scholar 

  • Vukusic P, Sambles JR, Lawrence CR, Wootton RJ (2002) Limited-view iridescence in the butterfly Ancyluris meliboeus. Proc R Soc Lond B 269:7–14

    CAS  Google Scholar 

  • Vukusic P, Wootton RJ, Sambles JR (2004) Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae). Proc R Soc Lond B 271:595–601

    CAS  Google Scholar 

  • Wehner R (1989) Neurobiology of polarization vision. Trends Neurosci 12:353–359

    PubMed  CAS  Google Scholar 

  • Wehner R, Bernard GD (1993) Photoreceptor twist: a solution to the false-color problem. Proc Natl Acad Sci 90:4132–4135

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wehner R, Labhart T (2006) Polarisation vision. In: Warrant EJ, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge

    Google Scholar 

  • Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302

    CAS  Google Scholar 

  • Wilts B, Pirih P, Stavenga D (2011) Spectral reflectance properties of iridescent pierid butterfly wings. J Comp Physiol A 197:693–702

    Google Scholar 

  • Wynberg H, Meijer EW, Hummelen JC, Dekkers HPJM, Schippers PH, Carlson AD (1980) Circular polarization observed in bioluminescence. Nature 286:641–642

    CAS  Google Scholar 

  • Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

    Google Scholar 

  • Zeil J, Hofmann M (2001) Signals from ‘crabworld’: cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Marshall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marshall, J., Roberts, N., Cronin, T. (2014). Polarisation Signals. In: Horváth, G. (eds) Polarized Light and Polarization Vision in Animal Sciences. Springer Series in Vision Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54718-8_19

Download citation

Publish with us

Policies and ethics