Skip to main content

Querschnittlähmung: Akutbehandlung und Rehabilitation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Die Intensivmedizin

Zusammenfassung

Eine Querschnittlähmung (QSL) ist Folge einer Schädigung der motorischen und sensiblen Bahnen des Rückenmarks und des vegetativen Nervensystems. Im Rahmen der Akutbehandlung wird meistens eine intensivmedizinische Behandlung notwendig. Bereits in dieser Phase muss eine integrierte und individualisierte Rehabilitation stattfinden, um einerseits Komplikationen bestmöglich zu verhindern und andererseits gute Voraussetzungen für die grösstmögliche Funktionsfähigkeit („expected outcome“) zu schaffen.

Neben der Stabilisation der neuromuskulären Funktionen sind besondere Behandlungsprinzipien im Rahmen der Querschnittlähmung zu berücksichtigen. Insbesondere die Beeinträchtigung der vegetativen Funktionen in der spinalen und neurogenen Schockphase. Aus diesem Grund ist ein querschnittspezifisches Management von Hypotonie, Bradykardie, Hypothermie, Hypoventilation, reduziertem Hustenstoß und erschwerter Sekretexpektoration mit Bronchokonstriktion und Hypersekretion, Blasenfunktionsstörung, Gastro- und Kolonparese notwendig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Adams A (2005) Zur Diagnostik und Therapie der Schockformen – Empfehlungen der Interdisziplinären Arbeitsgruppe Schock der DIVI – Teil VI – Neurogener Schock. Anästh Intensivmed 46:453–457

    Google Scholar 

  • Aito S (2002) Primary prevention of deep venous thrombosis and pulmonary embolism in acute spinal cord injured patients. Spinal Cord 40:300–303

    Article  CAS  Google Scholar 

  • Alexander MS et al (2009) International standards to document remaining autonomic function after spinal cord injury. Spinal Cord 47:36–43

    Article  CAS  Google Scholar 

  • Almeida CN, Lopes AJ, Guimarães FS (2020) Cough peak flow to predict the extubation outcome: comparison between three cough stimulation methods. Can J Respir Ther 56:58–64. https://doi.org/10.29390/cjrt-2020-037

    Article  Google Scholar 

  • ASIA (2019) American Spinal Injury Association: standard for neurological classification of spinal injured patients. International Standards for Neurological Classification of SCI (ISNCSCI) Worksheet – American Spinal Injury Association (asia-spinalinjury.org). https://asia-spinalinjury.org/international-standards-neurological-classification-sci-isncsci-worksheet/. Zugegriffen am 11.2021

  • ASIA – American Spinal Injury Association (2019) International standards for neurological classification of spinal cord injury. American Spinal Injury Association, Atlanta

    Google Scholar 

  • Bach JR (1994) Cough in SCI patients. Arch Phys Med Rehabil 75:610

    Article  CAS  Google Scholar 

  • Bach JR (2006) Prevention of respiratory complications of spinal cord injury: a challenge to „model“ spinal cord injury units. J Spinal Cord Med 29:3–4

    Article  Google Scholar 

  • Bach JR, Saporito LR (1996) Criteria for extubation and tracheostomy tube removal for patients with ventilatory failure. A different approach to weaning. Chest 110(6):1566–1571

    Article  CAS  Google Scholar 

  • Badhiwala JH, Ahuja CS, Fehlings MG (2018) Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine 30(1):1–18. https://doi.org/10.3171/2018.9.SPINE18682. PMID: 30611186

    Article  Google Scholar 

  • Bauman WA, Spungen AM (2000) Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am 11:109–140

    Article  CAS  Google Scholar 

  • Berlowitz DJ, Tamplin J (2013) Respiratory muscle training for cervical spinal cord injury. Cochrane Database Syst Rev 7. https://doi.org/10.1002/14651858.CD008507

  • Betz R, Biering-Sørensen F, Burns SP, Donovan W, Graves DE, Guest J et al (2019) ASIA and ISCoS International Standards Committee. The 2019 revision of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI)-what’s new? Spinal Cord 57(10):815–817. https://doi.org/10.1038/s41393-019-0350-9

    Article  Google Scholar 

  • Blackmer J (2003) Rehabilitation medicine: autonomic dysreflexia. Can Med Assoc J 169:931–935

    Google Scholar 

  • Bracken MB, Shepard MJ, Holford TR et al (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Injury Randomized Controlled Trial National Acute Spinal Cord Study. JAMA 277:1597–1604

    Article  CAS  Google Scholar 

  • Brommer B, Engel O, Kopp MA, Watzlawick R, Müller S, Prüss H et al (2016) Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 139(3):692–707. https://doi.org/10.1093/brain/awv375

    Article  Google Scholar 

  • Brown R, DiMarco AF, Hoit JD, Garshick E (2006) Respiratory dysfunction and management in spinal cord injury. Respir Care 51(8):853–868

    Google Scholar 

  • Chamberlain JD (2018) Differenzial survival after traumatic spinal cord injury: evidence from a multi-center longitudinal cohort study in Switzerland. Spinal Cord 56:920–930. https://doi.org/10.1038/s41393-018-0163-2

    Article  Google Scholar 

  • Chamberlain JD, Ronca E, Brinkhof MWG (2017) Estimating the incidence of traumatic spinal cord injuries in Switzerland use of administrative data to identify potential coverage error in a cohort study. Swiss Med Wkly. https://doi.org/10.4414/smw.2017.14430

  • Chay W, Kirshblum S (2020) Predicting outcomes after spinal cord injury. Phys Med Rehabil Clin N Am 31(3):331–343. https://doi.org/10.1016/j.pmr.2020.03.003. Epub 2020 May 26

    Article  Google Scholar 

  • Chhabra HS (2015) ISCoS textbook on comprehensive management of spinal cord injuries, 1. Aufl. Wolters Kluwer, New Dehli. ISBN-13: 978-93-5129-440-5

    Google Scholar 

  • Chiodo AE, Sitrin RG, Bauman KA (2016) Sleep disordered breathing in spinal cord injury: a systematic review. J Spinal Cord Med 39(4):374–382. https://doi.org/10.1080/10790268.2015.1126449. Epub 2016 Mar 15. PMID: 27077573 Free PMC article. Review

    Article  Google Scholar 

  • Clark M (2017) Nature of the non-traumatic spinal cord injury literature: a systematic review. Top Spinal Cord Inj Rehabil 23(4):353–367. https://doi.org/10.1310/sci2304-353

    Article  Google Scholar 

  • Clay RD, Iyer VN, Reddy DR, Siontis B, Scanlon PD (2017) The „complex restrictive“ pulmonary function pattern: clinical and radiologic analysis of a common but previously undescribed restrictive pattern. Chest 152(6):1258–1265

    Article  Google Scholar 

  • Conti K (2020) Spinal shock: differentiation from neurogenic shock and key management approaches Clinical Management of Shock, IntechOpen. London, UK

    Google Scholar 

  • Curt A, Dietz V (1999) Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal Cord 37:157–165

    Article  CAS  Google Scholar 

  • Danielle L Davison, Megan Terek, Lakhmir S Chawla (2012) Neurogenic pulmonary edema. Crit Care 16(2):212

    Google Scholar 

  • Daoud A, Haider S, Sankari A (2020) Noninvasive ventilation and spinal cord injury. Sleep Med Clin 15(4):461–470. https://doi.org/10.1016/j.jsmc.2020.08.006. Epub 2020 Oct 6. PMID: 33131657 Review

    Article  Google Scholar 

  • David J Berlowitz (2005) A longitudinal evaluation of sleep and breathing in the first year after cervical spinal cord injury. Arch Phys Med Rehabil 86(6):1193–1199

    Google Scholar 

  • Davison D, Terek M, Chawla L (2012) Neurogenic pulmonary edema. Crit Care 16:1–7

    Google Scholar 

  • De Troyer A, Estenne M (1991) The expiratory muscles in tetraplegia. Paraplegia 29(6):359–363

    Google Scholar 

  • Dicpinigaitis PV, Spungen AM, Bauman WA, Absgarten A, Almenoff PL (1994) Bronchial hyperresponsiveness after cervical spinal cord injury. Chest 105:1073–1076

    Article  CAS  Google Scholar 

  • Ditunno JF (2004) Spinal shock revisited: a four-phase model. Spinal Cord 42(7):383–395

    Article  CAS  Google Scholar 

  • Failli V, Kleitman N, Lammertse D, Hsieh J et al (2021) Experimental treatments for spinal cord injury: what you should know. Top Spinal Cord Inj Rehabil 27(2):50–74. https://doi.org/10.46292/sci2702-50

    Article  Google Scholar 

  • Fehlings MG, Vaccaro A, Wilson JR, Singh A, Cadotte DW, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2):e32037. https://doi.org/10.1371/journal.pone.0032037. Epub 2012 Feb 23. PMID: 22384132

    Article  CAS  Google Scholar 

  • Fehlings MG, Tetreault LA, Wilson JR, Kwon BK, Burns AS, Martin AR et al (2017) A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope. Global Spine J 7(3 Suppl):84S–94S. https://doi.org/10.1177/2192568217703387

    Article  Google Scholar 

  • Felleiter P, Reinsberger C, Springe D, Plunien H, Baumberger M (2006) Preclinical diagnosis of traumatic paraplegia or tetraplegia – a prospective study in 100 patients. Anasthesiol Intensivmed Notfallmed Schmerzther 41:9–13

    Article  CAS  Google Scholar 

  • Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpää M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14(2):162–173

    Google Scholar 

  • Freund P, Seif M, Weiskopf N, Friston K, Fehlings MG, Thompson AJ et al (2019) MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol 18(12):1123–1135. https://doi.org/10.1016/s1474-4422(19)30138-3. Accession Number: 31405713

    Article  Google Scholar 

  • Fujiwara T, Hara Y, Chino N (1999) Expiratory function in complete tetraplegics: study of spirometry, maximal expiratory pressure, and muscle activity of pectoralis major and latissimus dorsi muscles. Am J Phys Med Rehabil 78(5):464–469

    Article  CAS  Google Scholar 

  • Glenn WW, Anagnostopoulos CE (1966) Electronic pacemakers of the heart, gastrointestinal tract, phrenic nerve, bladder, and carotid sinus: current status. Surgery 60:480–494

    Google Scholar 

  • Grassner L, Wutte C, Zimmermann G, Grillhösl A, Schmid K, Weiβ T et al (2019) Influence of preoperative magnetic resonance imaging on surgical decision making for patients with acute traumatic cervical spinal cord injury: a survey among experienced spine surgeons. World Neurosurg 131:e586–e592. https://doi.org/10.1016/j.wneu.2019.08.009

    Article  Google Scholar 

  • Grimm DR, Chandy D, Almenoff PL, Schilero G, Lesser M (2000) Airway hyperreactivity in subjects with tetraplegia is associated with reduced baseline airway caliber. Chest 118(5):1397–1404

    Article  CAS  Google Scholar 

  • Grimm DR, Schilero GJ, Spungen AM, Bauman WA, Lesser M (2006) Salmeterol improves pulmonary function in persons with tetraplegia. Lung 184:335–339

    Article  Google Scholar 

  • Gunnar E, Hartl W, Adolph M, Felbinger T et al (2018) DGEM-Leitlinie: „Klinische Ernährung in der Intensivmedizin“, (AWMF-Registernummer 073-004). Klin Ernähr Aktuel Ernahrungsmed 43:341–408. https://doi.org/10.1055/a-0713-8179

    Article  Google Scholar 

  • Gunnar Elke (2019) Clinical Nutrition in Critical Care Medicine – Guideline of the German Society for 2019. Nutritional Medicine (DGEM). Clin Nutr ESPEN 33:220–275

    Google Scholar 

  • Himmelseher S, Büttner J, Baethmann A, Piek J, Unterberg AW (1999) Zur Gabe von Kortikosteroiden nach akuter spinaler Traumatisierung. Mitteilung des wissenschaftlichen Arbeitskreises Neuroanästhesie der DGAI. Anästh Intensivmed 10:716–726

    Google Scholar 

  • Hirschfeld S (2008) Mechanical ventilation or phrenic nerve stimulation for treatment of spinal cord injury-induced respiratory insufficiency. Spinal Cord 46(11):738–742

    Article  CAS  Google Scholar 

  • Ishikawa Y, Bach JR, Komaroff E, Miura T, Jackson-Parekh R. (2008) Cough augmentation in Duchenne muscular dystrophy. Am J Phys Med Rehabil 87(9):726–730

    Google Scholar 

  • Kang SW, Bach JR (2000) Maximum insufflation capacity: vital capacity and cough flows in neuromuscular disease. Am J Phys Med Rehabil 79(3):222–227

    Article  CAS  Google Scholar 

  • Kirshblum S, Johnston MV, Brown J, O’Connor KC, Jarosz P (1999) Predictors of dysphagia after spinal cord injury. Arch Phys Med Rehabil 80(9):1101–1105

    Google Scholar 

  • Kirshblum S, Botticello A, DeSipio G, Fichtenbaum J, Shah A, Scelza W (2016) Breaking the news: a pilot study on patient perspectives of discussing prognosis after traumatic spinal cord injury. J Spinal Cord Med 39(2):155–161. https://doi.org/10.1179/2045772315Y.0000000013

    Article  Google Scholar 

  • Krassioukov A, Eng J, Claxton RN (2010) Neurogenic bowel management after spinal cord injury: a systematic review of the evidence. Spinal Cord 48(10):718–733. https://doi.org/10.1038/sc.2010.14

    Article  CAS  Google Scholar 

  • Kwon BK, Bloom O, Wanner IB, Curt A, Schwab JM, Fawcett J, Wang KK (2019) Neurochemical biomarkers in spinal cord injury. Spinal Cord 57(10):819–831. https://doi.org/10.1038/s41393-019-0319-8. Epub 2019 Jul 4. PMID: 3127329

    Article  Google Scholar 

  • Landmann G, Chang E-C, Dumat W, Lutz A, Müller R, Scheel-Sailer A, Schwerzmann K, Sigajew N, Ljutow A (2017) Pain in patients with paraplegia Schmerz 31(5):527–545

    Google Scholar 

  • Linn WS, Adkins RH, Gong H Jr, Waters RL (2000) Pulmonary function in chronic spinal cord injury: a cross-sectional survey of 222 southern California adult outpatients. Arch Phys Med Rehabil 81(6):757–763

    Article  CAS  Google Scholar 

  • Linn WS, Spungen AM, Gong H Jr, Adkins RH, Bauman WA, Waters RL (2001) Forced vital capacity in two large outpatient populations with chronic spinal cord injury. Spinal Cord 39(5):263–268

    Article  CAS  Google Scholar 

  • Loh E (2022) The CanPain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord injury: 2021 update. Spinal Cord 60(6):548–566

    Google Scholar 

  • Mathias CJ (2013) Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System 5th Edition. Oxford University Press. ISBN-13: 978-0198566342

    Google Scholar 

  • Maynard FM, Bracken MB Jr, Creasey G, Ditunno JF et al (1997) International standards for neurological and functional classification of spinal cord injury. Spinal Cord 35:266–274

    Article  Google Scholar 

  • McEvoy RD, Mykytyn I, Sajkov D, Flavell H, Marshall R, Antic R et al (1995) Sleep apnoea in patients with quadriplegia. Thorax 50(6):613–619

    Article  CAS  Google Scholar 

  • Mueller G, de Groot S, van der Woude L, Hopman MTE (2008) Time-courses of lung function and respiratory muscle pressure generating capacity after spinal cord injury: a prospective cohort study. J Rehabil Med 40(4):269–276. https://doi.org/10.2340/16501977-0162

    Article  Google Scholar 

  • Mueller G, de Groot S, van der Woude LH, Perret C, Michel F, Hopman MT (2012) Prediction models and development of an easy to use open-access tool for measuring lung function of individuals with motor complete spinal cord injury. J Rehabil Med 44(8):642–647

    Article  Google Scholar 

  • Najmanova K, Neuhauser C, Krebs J et al (2021) Risk factors for hospital acquired pressure injury in patients with spinal cord injury during first rehabilitation: prospective cohort study. Spinal Cord. https://doi.org/10.1038/s41393-021-00681-x. 9 Aug 2021. Online ahead of print

  • Nobel D, Baumberger M, Eser P, Michel D, Knecht H, Stocker R (2002) Nontraumatic pancreatitis in spinal cord injury. Spine 1(27):E228–E232

    Article  Google Scholar 

  • O’Rourke J (2020) Initial assessment of the percutaneous electrical phrenic nerve stimulation system in patients on mechanical ventilation. Crit Care Med 48(5):e362–e370

    Article  Google Scholar 

  • Onders RP, Elmo M, Kaplan C, Schilz R, Katirji B, Tinkoff G (2018) Long-term experience with diaphragm pacing for traumatic spinal cord injury: early implantation should be considered. Surgery 164(4):705–711

    Article  Google Scholar 

  • Pandrich M, Demetriades A (2020) Prevalence of concomitant traumatic cranio-spinal injury: a systematic review and meta-analysis. Neurosurg Rev 43:69–77, Springer

    Article  Google Scholar 

  • Pelekhaty SL, Ramirez CL, Massetti JM, Gaetani D, Riggin K, Schwartzbauer G, Stein DM (2021) Measured vs predicted energy expenditure in mechanically ventilated adults with acute, traumatic spinal cord injuries. Nutr Clin Pract 36(2):464–471. https://doi.org/10.1002/ncp.10609. Epub 2020 Dec 9. PMID: 33300194

    Article  Google Scholar 

  • Prevention and treatment of pressure Ulcers/Injury (2019) Quick Reference Guide 2019 EPUAP European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel and Pan Pacific Pressure Injury Alliance ISBN 978-0-6480097-9-5

    Google Scholar 

  • Raab AM, Krebs J, Perret C, Michel F, Hopman MT, Mueller G (2016) Maximum inspiratory pressure is a discriminator of pneumonia in individuals with spinal-cord injury. Respir Care 61(12):1636–1643. https://doi.org/10.4187/respcare.04818. PubMed

    Article  Google Scholar 

  • Raab AM, Krebs J, Perret C, Pfister M, Hopman M, Mueller G (2018) Evaluation of a clinical implementation of a respiratory muscle training group during spinal cord injury rehabilitation. Spinal Cord Ser Cases 4(1):40. https://doi.org/10.1038/s41394-018-0069-4

    Article  Google Scholar 

  • Radulovic M, Schilero GJ, Yen C, Bauman WA, Wecht JM, Ivan A, La Fountaine MF, Korsten MA (2015) Greatly increased prevalence of esophageal dysmotility observed in persons with spinal cord injury. Dis Esophagus 28(7):699–704

    Article  CAS  Google Scholar 

  • Riklin C, Baumberger M, Wick L, Michel D, Sauter B, Knecht H (2003) Deep vein thrombosis and heterotopic ossification in spinal cord injury: a 3 year experience at the Swiss Paraplegic Centre Nottwil. Spinal Cord 41(3):192–198

    Article  CAS  Google Scholar 

  • Roman G, Gracia F, Torres A, Palacios A et al (2021) Acute Transverse Myelitis (ATM): clinical review of 43 patients with COVID-19-associated atm and 3 post-vaccination ATM serious adverse events with the ChAdOx1 nCoV-19 vaccine (AZD1222). Front Immunol. https://doi.org/10.3389/fimmu.2021.653786

  • Sajkov D, Marshall R, Walker P, Mykytyn I, McEvoy RD, Wale J et al (1998) Sleep apnoea related Hypoxia is associated with cognitive disturbances in patients with tetraplegia. Spinal Cord 36(4):231–239

    Article  CAS  Google Scholar 

  • Sancho J, Servera E, Diaz J, Marin J (2007) Predictors of ineffective cough during a chest infection in patients with stable amyotrophic lateral sclerosis. Am J Respir Crit Care Med 175(12):1266–1271

    Article  Google Scholar 

  • Sankari A, Bascom A, Oomman S, Badr MS (2014) Sleep disordered breathing in chronic spinal cord injury. J Clin Sleep Med 10(1):65–72

    Article  Google Scholar 

  • Scheel-Sailer A, Wyss A, Boldt C, Post MW, Lay V (2013) Prevalence, location, grade of pressure ulcers and association with specific patient characteristics in adult spinal cord injury patients during the hospital stay: a prospective cohort study. J Spinal Cord 51:828–833. https://doi.org/10.1038/sc.2013.91. Epub 2013

    Article  CAS  Google Scholar 

  • Schilero GJ, Grimm DR, Bauman WA, Lenner R, Lesser M (2005) Assessment of airway caliber and bronchodilator responsiveness in subjects with spinal cord injury. Chest 127(1):149–155

    Article  Google Scholar 

  • Schmid C, Wahlers T, Schäfers HJ, Haverich A (1993) Supraventricular bradycardia after heart transplantation orciprenaline or pace maker implantation? Thorac Cardiovasc Surg 41(2):101–103. https://doi.org/10.1055/s-2007-1013830

    Article  CAS  Google Scholar 

  • Schmidt O, Gahr R, Gosse A, Heyde C (2009) ATLS® and damage control in spine trauma. World J Emerg Surg 4:9. https://doi.org/10.1186/1749-7922-4-9

    Article  Google Scholar 

  • Schuld C, Wiese J, Franz S, Putz C, Stierle I, Smoor I, Weidner N, EMSCI Study Group, Rupp R (2013) Effect of formal training in scaling, scoring and classification of the International Standards for Neurological Classification of Spinal Cord Injury. Spinal Cord 51(4):282–288. https://doi.org/10.1038/sc.2012.149. Epub 2012 Nov 27. PMID: 23184026

    Article  CAS  Google Scholar 

  • Senent C (2011) A comparison of assisted cough techniques in stable patients with severe respiratory insufficiency due to amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(1):26–32

    Google Scholar 

  • Simons RK, Hoyt DB, Winchell RJ, Holbrook T, Eastman AB (1995) A risk analysis of stress ulceration after trauma. J Trauma 39(2):289–293

    Google Scholar 

  • Stephen P Burns 1, Mohammad Yavari Rad, Stacey Bryant, Vishesh Kapur (2005) Long-term treatment of sleep apnea in persons with spinal cord injury. Am J Phys Med Rehabil 84(8):620–626

    Google Scholar 

  • Stockhammer E, Tobon A, Michel F, Eser P, Scheuler W, Bauer W, Baumberger M, Müller W, Kakebeeke TH, Knecht H, Zäch GA (2002) Characteristics of sleep apnea syndrome in tetraplegic patients. Spinal Cord 40(6):286–294

    Google Scholar 

  • Tran K, Hukins C, Geraghty T, Eckert B, Fraser L (2010) Sleep-disordered breathing in spinal cord-injured patients: a short-term longitudinal study. Respirology 15(2):272–276

    Google Scholar 

  • Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, American Association of Neurological Surgeons, Congress of Neurological Surgeons et al (2013) Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery 60(CN_Suppl_1):82–91. https://doi.org/10.1227/01.neu.0000430319.32247.7f

    Article  Google Scholar 

  • Watanabe Y, Tamura T, Imai R, Maruyama K, Iizuka M, Ohashi S, Yamaguchi S, Watanabe T (2021) High-flow nasal cannula oxygen therapy was effective for dysphagia associated with respiratory muscle paralysis due to cervical spinal cord injury: A case report. Medicine (Baltimore) 13(32):100

    Google Scholar 

  • Waters RL, Adkins RH, Yakura JS (1991) Definition of complete spinal cord injury. Paraplegia 29(9):573–581

    CAS  Google Scholar 

  • Wecht JM, Harel NY, Guest J, Kirshblum SC, Forrest GF, Bloom O, Ovechkin AV, Harkema (2020) Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. S. Semin Neurol 40(5):550–559

    Google Scholar 

  • Wecht J, Krassioukov A, Alexander M, Handrakis J et al (2021) International Standards to document Autonomic Function following SCI (ISAFSCI) second edition. Top Spinal Cord Inj Rehabil 27(2):23–49. https://doi.org/10.46292/sci2702-23

    Article  Google Scholar 

  • Weaver LC, Fleming JC, Mathias CJ, Krassioukov AV (2012) Disordered cardiovascular control after spinal cord injury. Handb Clin Neurol 109:213–233

    Google Scholar 

  • Wong SL, Shem K, Crew J (2012) Specialized respiratory management for acute cervical spinal cord injury:: a retrospective analysis. Top Spinal Cord Inj Rehabil 18(4):283–290

    Article  Google Scholar 

  • Woolsley RM, Young RR (1991) The clinical diagnosis of disorders of the spinal cord. Neurol Clin 9:573–583

    Article  Google Scholar 

  • Wuermser LA, Ho CH, Chiodo AE, Priebe MM, Kirshblum SC, Scelza WM. (2007) Spinal cord injury medicine. 2. Acute care management of traumatic and nontraumatic injury. Arch Phys Med Rehabil 88(3 Suppl 1):S55–61

    Google Scholar 

  • Yue JK (2019) Vasopressor support in managing acute spinal cord injury: current knowledge. J Neurosurg Sci 63(3):308–317. https://doi.org/10.23736/S0390-5616.17.04003-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Baumberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baumberger, M., Michel, F., Brendebach, L., Koch, H.G., Felleiter, P., Scheel-Sailer, A. (2022). Querschnittlähmung: Akutbehandlung und Rehabilitation. In: Marx, G., Muhl, E., Zacharowski, K., Zeuzem, S. (eds) Die Intensivmedizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54675-4_58-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54675-4_58-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54675-4

  • Online ISBN: 978-3-642-54675-4

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Querschnittlähmung: Akutbehandlung und Rehabilitation
    Published:
    14 December 2022

    DOI: https://doi.org/10.1007/978-3-642-54675-4_58-2

  2. Original

    Querschnittlähmung: Akutbehandlung und Rehabilitation
    Published:
    01 April 2015

    DOI: https://doi.org/10.1007/978-3-642-54675-4_58-1