Skip to main content

Blutgasanalyse

Die Intensivmedizin

Part of the book series: Springer Reference Medizin ((SRM))

  • 1369 Accesses

Zusammenfassung

Ein Großteil der kritisch kranken Patienten in der Intensivmedizin zeigt ausgeprägte Veränderungen im Milieu der Körperflüssigkeiten. Das intakte Zusammenspiel verschiedener Regulationsmechanismen, kurz Säure-Basen-Haushalt genannt, ist jedoch für die Wiederherstellung der Homöostase essenziell, denn nahezu alle biochemischen Reaktionen des Körpers sind abhängig von der Aufrechterhaltung einer physiologischen Wasserstoffionenkonzentration. Diese wird daher vom Organismus normalerweise in sehr engen Grenzen konstant gehalten. Größere Veränderungen können weitreichende Organdysfunktionen hervorrufen.

Dieses Kapitel stellt die physiologischen Grundlagen des Säure-Basen-Haushalts, die Pathophysiologie sowie die Therapie bei Störungen des Säure-Basen-Haushalts dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Arbus GS (1973) An in vivo acid-base nomogram for clinical use. Can Med Assoc J 109:291–293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Astrup P, Jorgensen K, Andersen OS, Engel K (1960) The acid-base metabolism. A new approach. Lancet 1:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyan N, Havens PL, Hoffman GM (1999) Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 27:1577–1581

    Article  CAS  PubMed  Google Scholar 

  • Burton RF (1992) The roles of intracellular buffers and bone mineral in the regulation of acid-base balance in mammals. Comp Biochem Physiol Comp Physiol 102:425–432

    Article  CAS  PubMed  Google Scholar 

  • Corey HE, Vallo A, Rodriguez-Soriano J (2006) An analysis of renal tubular acidosis by the Stewart method. Pediatr Nephrol 21:206–211

    Article  PubMed  Google Scholar 

  • Cusack RJ, Rhodes A, Lochhead P et al (2002) The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 28:864–869

    Article  CAS  PubMed  Google Scholar 

  • Davis JW, Parks SN, Kaups KL et al (1996) Admission base deficit predicts transfusion requirements and risk of complications. J Trauma 41:769–774

    Article  CAS  PubMed  Google Scholar 

  • Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 162:2246–2251

    Article  CAS  PubMed  Google Scholar 

  • Figge J, Rossing TH, Fencl V (1991) The role of serum proteins in acid-base equilibria. J Lab Clin Med 117:453–467

    CAS  PubMed  Google Scholar 

  • Gunnerson KJ, Saul M, He S, Kellum JA (2006) Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care 10:R22

    Article  PubMed Central  PubMed  Google Scholar 

  • Halperin ML (1982) Metabolism and acid-base physiology. Artif Organs 6:357–362

    Article  CAS  PubMed  Google Scholar 

  • Hasselbalch KA (1916) Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem Z 78:112–144

    CAS  Google Scholar 

  • Henderson LJ, Cohn EJ (1916) The equilibrium between acids and bases in sea water. Proc Natl Acad Sci USA 2:618–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan LJ, Kellum JA (2004) Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 32:1120–1124

    Article  CAS  PubMed  Google Scholar 

  • Kellum JA (1998) Metabolic acidosis in the critically ill: lessons from physical chemistry. Kidney Int Suppl 66:81–86

    Google Scholar 

  • Kellum JA (2002a) Saline-induced hyperchloremic metabolic acidosis. Crit Care Med 30:259–261

    Article  PubMed  Google Scholar 

  • Kellum JA (2002b) Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med 30:300–305

    Article  PubMed  Google Scholar 

  • Kellum JA (2005) Clinical review: reunification of acid-base physiology. Crit Care 9:500–507

    Article  PubMed Central  PubMed  Google Scholar 

  • Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1998) Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock 9:364–368

    Article  CAS  PubMed  Google Scholar 

  • Kellum JA, Song M, Venkataraman R (2004) Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest 125:243–248

    Article  CAS  PubMed  Google Scholar 

  • Kiraly LN, Differding JA, Enomoto TM et al (2006) Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma 61:57–64

    Article  PubMed  Google Scholar 

  • Magder S (2002) A „post-copernican“ analysis of intracellular pH. In: Gallo A (Hrsg) Anaesthesia pain intensive care and emergency medicine. Springer, Berlin/Heidelberg/New York, S 589–609

    Chapter  Google Scholar 

  • Maloney DG, Appadurai IR, Vaughan RS (2002) Anions and the anaesthetist. Anaesthesia 57:140–154

    Article  CAS  PubMed  Google Scholar 

  • Oh MS, Carroll HJ (1977) The anion gap. N Engl J Med 297:814–817

    Article  CAS  PubMed  Google Scholar 

  • Park M, Azevedo LC, Maciel AT et al (2006) Evolutive standard base excess and serum lactate level in severe sepsis and septic shock patients resuscitated with early goal-directed therapy: still outcome markers? Clinics 61:47–52

    Article  PubMed  Google Scholar 

  • Rehm M, Finsterer U (2003) Treating intraoperative hyperchloremic acidosis with sodium bicarbonate or tris-hydroxymethyl aminomethane: a randomized prospective study. Anesth Analg 96:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Rehm M, Orth V, Scheingraber S et al (2000) Acid-base changes caused by 5 % albumin versus 6 % hydroxyethyl starch solution in patients undergoing acute normovolemic hemodilution: a randomized prospective study. Anesthesiology 93:1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Rehm M, Conzen PF, Peter K, Finsterer U (2004) The Stewart model. „Modern“ approach to the interpretation of the acid-base metabolism. Anaesthesist 53:347–357

    Article  CAS  PubMed  Google Scholar 

  • Ring T, Frische S, Nielsen S (2005) Clinical review: renal tubular acidosis – a physicochemical approach. Crit Care 9:573–580

    Article  PubMed Central  PubMed  Google Scholar 

  • Rixen D, Raum M, Bouillon B et al (2001a) Predicting the outcome in severe injuries: an analysis of 2069 patients from the trauma register of the German Society of Traumatology (DGU). Unfallchirurg 104:230–239

    Article  CAS  PubMed  Google Scholar 

  • Rixen D, Raum M, Bouillon B et al (2001b) Base deficit development and its prognostic significance in posttrauma critical illness: an analysis by the trauma registry of the Deutsche Gesellschaft fur unfallchirurgie. Shock 15:83–89

    Article  CAS  PubMed  Google Scholar 

  • Roche AM, James MF, Bennett-Guerrero E, Mythen MG (2006) A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluids. Anesth Analg 102:1274–1279

    Article  PubMed  Google Scholar 

  • Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R (2003) Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med 31:2131–2136

    Article  CAS  PubMed  Google Scholar 

  • Sahu A, Cooper HA, Panza JA (2006) The initial anion gap is a predictor of mortality in acute myocardial infarction. Coron Artery Dis 17:409–412

    Article  PubMed  Google Scholar 

  • Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270

    Article  CAS  PubMed  Google Scholar 

  • Siggaard-Andersen O (1977) The van Slyke equation. Scand J Clin Lab Invest Suppl 37:15–20

    Article  CAS  Google Scholar 

  • Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand Suppl 107:123–128

    Article  CAS  PubMed  Google Scholar 

  • Singer R, Hastings A (1948) An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine (Baltimore) 27:223–242

    Article  CAS  Google Scholar 

  • Smith I, Kumar P, Molloy S et al (2001) Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med 27:74–83

    Article  CAS  PubMed  Google Scholar 

  • Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    Article  CAS  PubMed  Google Scholar 

  • Story DA, Morimatsu H, Bellomo R (2004) Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid-base disorders. Br J Anaesth 92:54–60

    Article  CAS  PubMed  Google Scholar 

  • Wilkes NJ, Woolf R, Mutch M et al (2001) The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93:811–816

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hofmann-Kiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Berlin Heidelberg

About this entry

Cite this entry

Hofmann-Kiefer, K., Conzen, P., Rehm, M. (2015). Blutgasanalyse. In: Marx, G., Muhl, E., Zacharowski, K. (eds) Die Intensivmedizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54675-4_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54675-4_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-54675-4

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Blutgasanalyse
    Published:
    18 March 2023

    DOI: https://doi.org/10.1007/978-3-642-54675-4_26-2

  2. Original

    Blutgasanalyse
    Published:
    29 September 2015

    DOI: https://doi.org/10.1007/978-3-642-54675-4_26-1