Skip to main content

Therapeutische Bereiche von Medikamenten in der Pädiatrie

  • Living reference work entry
  • First Online:
Pädiatrie

Part of the book series: Springer Reference Medizin ((SRM))

  • 123 Accesses

Zusammenfassung

Der Begriff Referenzwert hat den Begriff Normalwert ersetzt. Die Definition des Normalen ist komplex und dessen Beschreibung in Zahlen im strengen Sinne in der Praxis nur schwer und mit sehr viel Aufwand durchzuführen. Die Erstellung von Referenzwerten ist eine der anspruchvollsten und wichtigsten Anforderungen an die Klinische Chemie. Klinisch-chemische Parameter in humanem Material sind von endogenen und exogenen Einflüssen abhängig. Die Kenntnis dieser Einflüsse ist notwendig, um die Werte richtig zu interpretieren; das Alter des Patienten beeinflusst die klinisch chemischen Parameter entscheidend. Die hier nach Alter aufgelisteten Werte sind daher eine wichtige Hilfe, um sie zu diagnostischen Zwecken zu verwenden. Klinisch-chemische Parameter sind nicht nur von endogenen und exogenen Einflüssen, sondern auch von Methoden abhängig. Es ist deshalb sinnvoll, sich bei dem entsprechenden Labor nach der Bestimmungsmethode zu erkundigen. Vielfach gibt es für einzelne Parameter „laborspezifische“ und „methodenspezifische“ Referenzwerte. Die intensive Kommunikation mit dem Labor bringt Klarheit und damit Sicherheit in der Diagnose, vor allem dann, wenn in den Akten des Patienten Laborwerte aus verschiedenen Laboratorien aus früheren Zeiten vorliegen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Abicht K, Heiduk M, Korn S, Klein G (2003) Lipase, p-amylase, CRP-hs, and creatinine: reference intervals from infancy to childhood. Clin Chem Lab Med 41:S 205 (Special suppl. Abstract)

    Google Scholar 

  • Aldrimer M, Ridefelt P, Rödöö P et al (2012) Reference intervals on the Abbott Architect for serum thyroid hormones, lipids and prolactin in healthy children in a population-based study. Scand J Clin Lab Invest 72:326–332

    CAS  PubMed  Google Scholar 

  • Andrew M, Paes B, Johnston M (1990) Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol 12:95–104

    CAS  PubMed  Google Scholar 

  • Artuch R, Vilaseca MA, Farre C, Ramon F (1995) Determination of lactate, pyruvate, beta-hydroxybutyrate and acetoacetate with a centrifugal analyser. Eur J Clin Chem Clin Biochem 33:529–533

    CAS  PubMed  Google Scholar 

  • Bachmann C, Colombo JP (1980) Determination of orotic acid in children’s urine. J Clin Chem Clin Biochem 18:293–295

    CAS  PubMed  Google Scholar 

  • Baens GS, Lundeen E, Cornblath M (1963) Studies of carbohydrate metabolism in the newborn infant. Pediatrics 31:580–589

    CAS  PubMed  Google Scholar 

  • Baerlocher K, Nadal D (1988) Das Menkes-Syndrom. Ergebn Inn Med Kinderheilkd 57:77–144

    CAS  Google Scholar 

  • Baratt TM, Kasidas GP, Murdoch I, Rose GA (1991) Urinary oxalate and glycolate excretion and plasma oxalate concentration. Arch Dis Child 66:501–503

    Google Scholar 

  • Barratt TM, Chandler C (1975) Clinical assessment of renal function. In: Rubin MI (Hrsg) Pediatric nephrology. Williams & Wilkins, Baltimore, S 55

    Google Scholar 

  • Baudner S, Dati F (1996) Standardisierung der Bestimmung von 14 Proteinen in Humanserum auf der Basis des neuen IFCC/BCR/CAP internationalen Referenzmaterials CRM 470. J Lab Med 20:145–152

    CAS  Google Scholar 

  • Biason-Lauber A, Zachmann M (1996) Disorders of steroid metabolism. In: Blau N, Duran M, Blaskovics ME (Hrsg) Physicians guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 419–436

    Google Scholar 

  • Bidlingmaier F (1995) Männliche Sexualhormone (Androgene) In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie, 3. Aufl. Schattauer, Stuttgart, S 1117–1120

    Google Scholar 

  • Bienvenu J, Jeppson JO, Ingenbleck Y (1996) Transthyretin (prealbumin) and retinol binding protein. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 9.01-1–9.01-7

    Google Scholar 

  • Bjure J, Fallström SP (1963) Endogenous formation of carbon monooxide in newborn infants. I. Non-icteric and icteric infants without blood group incompatibility. Acta Paediatr 52:361–366

    CAS  PubMed  Google Scholar 

  • Blair JI, Carachi R, Gupta R et al (1967) Plasma alpha-fetoprotein reference ranges in infancy: effect of prematurity. Arch Dis Child 62:362–369

    Google Scholar 

  • Blum WF (1992) Insulin-like growth factors and their binding proteins. In: Ranke MB (Hrsg) Functional endocrinologic diagnostics in children and adolescents. J & J, Mannheim, S 102

    Google Scholar 

  • Boineau FG, Lewy JE (1992) Nephrological problems in the newborn. In: Roberton NEC (Hrsg) Textbook of neonatology. Churchill Livingstone, Edinburgh, S 839–851

    Google Scholar 

  • Bourgeois M, Liersch R, Kramer HH (1977) Herzinsuffizienz. In: Reinhardt D (Hrsg) Therapie der Krankheiten im Kindes- und Jugendalter, 6. Aufl. Springer, Berlin/Heidelberg/New York, S 1128

    Google Scholar 

  • Bürgi W, Richterich R, Mittelholzer ML, Monstein S (1967) Die Glucosekonzentration im kapillären und venösen Plasma bei direkter enzymatischer Bestimmung. Schweiz Med Wschr 97:1721–1725

    PubMed  Google Scholar 

  • Catignani GL (1980) An HPLC method for the simultaneous determination of retinol and a-tocopherol in plasma or serum. In: Chytil R, Mc Cormick DB (Hrsg) Methods in enzymology, Bd 123. Academic, New York, S 215–219

    Google Scholar 

  • Chen IW, David R, Maxon HR et al (1980) Age, sex and race-related differences in myoglobin concentrations in the serum of healthy persons. Clin Chem 26:1864–1868

    CAS  PubMed  Google Scholar 

  • Ciba Geigy (Hrsg) (1980) Wissenschaftliche Tabellen Geigy, 8. Aufl. Ciba Geigy, Basel, S 60

    Google Scholar 

  • Clayton BE, Jenkins P, Round JM (1980) Paediatric chemical pathology: clinical tests and reference ranges. Blackwell, Oxford

    Google Scholar 

  • Coburn SP, Mahuren JD (1983) A versatile cation-exchange procedure for measuring the seven major forms of vitamin B6 in biological samples. Anal Biochem 129:310–317

    CAS  PubMed  Google Scholar 

  • Colantonio DA, Kyriakopoulou L, Chan MK et al (2012) Closing the gaps in pediatric laboratory referenc intervals: a caliper database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem 58:854–868

    CAS  PubMed  Google Scholar 

  • Colombo JP, Peheim E, Kretschmer R et al (1984) Plasma ammonia concentrations in newborn and children. Clin Chim Acta 138:283–291

    CAS  PubMed  Google Scholar 

  • Cornblath M, Reisner SH (1965) Blood glucose in the neonate and its clinical significance. N Engl J Med 273:378–380

    CAS  PubMed  Google Scholar 

  • Cornblath M, Schwartz R (1991) Disorders of carbohydrate metabolism in infancy, 3. Aufl. Blackwell, Oxford, S 79

    Google Scholar 

  • Craig W, Stein E (1996) Apolipoprotein A. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 12.01-1–12.01-11

    Google Scholar 

  • Dahlquist A, Svenningsen NW (1969) Galactose in the urine of newborn infants. J Pediatr 75:454–462

    Google Scholar 

  • Dallman PR (1977) Blood and blood forming tissue. In: Rudolph AM (Hrsg) Pediatrics, 16. Aufl. Appleton Century Crofts, New York, S 1178

    Google Scholar 

  • Dallman PR (1977) Blood and blood forming tissue. In: Rudolph AM (Hrsg) Pediatrics, 16. Aufl. Appleton Century Crofts, New York, S 1111

    Google Scholar 

  • Davies DP (1973) Plasma osmolality and protein intake in preterm infants. Arch Dis Child 48:575–579

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis AE (1996) α2-Macroglobulin. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 8.02-1–8.02-8

    Google Scholar 

  • de Haller R, Siegenthaler P, Hampai A et al (1962) Etude critique du test de la transpiration pour le dépistage des heterozygotes de la mucoviscidose. Schweiz Med Wochenschr 92:1463–1465

    Google Scholar 

  • Dembre PP, Roesel RA (1991) Screening for mucopolysaccharidoses by analysis of urinary glycosaminoglycans. In: Hommes FA (Hrsg) Techniques in diagnostic human biochemical genetics. Wiley-Liss, New York, S 84

    Google Scholar 

  • den Blauwen DH, Poppe WA, Tritschler W (1983) Cholinesterase (EC 3.1.1.8) mit Butyrylthiocholin-iodid als Substrat: Referenzwerte in Abhängigkeit von Alter und Geschlecht unter Berücksichtigung hormonaler Einflüsse und Schwangerschaft. J Clin Chem Clin Biochem 21:381–386

    Google Scholar 

  • Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497

    Google Scholar 

  • Dörner K (1989) Ausgewählte allgemeine Referenzwerte. In: Bachmann KD, Ewerbeck E, Kleihauer E et al (Hrsg) Pädiatrie in Praxis und Klinik, Bd. I, 2. Aufl. Fischer, Stuttgart, S 946

    Google Scholar 

  • Dörner K (2009) Klinische Chemie und Hämatologie. Georg Thieme Verlag, Stuttgart/New York, S 483

    Google Scholar 

  • Dörner K, Gaethke AS (1982) Calculation factors and reference values for quantitative lipoprotein electrophoresis in childhood. Clin Chim Acta 119:99–105

    PubMed  Google Scholar 

  • Dörner K, Stingl EM, Toeller W, Simon C (1979) Richtwerte zum Fettstoffwechsel im Kindesalter. Monatsschr Kinderheilkd 127:511–514

    PubMed  Google Scholar 

  • Ehrich JHH, Kirschstein M, Kehring N et al (1993) Proteinurie und Enzymurie als Leitsymptom renaler und extrarenaler Erkrankungen im Kindesalter. Monatsschr Kinderheilkd 141:59–69

    CAS  PubMed  Google Scholar 

  • Elliot BA, Wilkinson JH (1963) The serum hydroxybutyrate dehydrogenase in diseases other than myocardial infarction. Clin Sci 24:343–347

    Google Scholar 

  • Evans WE, Oellerich M, Holt DW (1994) Drug monitoring, Leitfaden für die klinische Praxis. Abbot Laboratories, Wiesbaden-Delkenheim

    Google Scholar 

  • Findling JW, Engeland WC, Raff H (1990) Emerging techniques: the use of immunoradiometric assay for the measurement of ACTH in human plasma. Trends Endocrinol Metab 6:283–287

    Google Scholar 

  • Fischbach F, Zawta B (1992) Age-dependent reference limits of several enzymes in plasma at different measuring temperatures. Klin Lab 38:555–561

    Google Scholar 

  • Fishman RA (1992a) Cerebrospinal fluid in diseases of the nervous system, 2. Aufl. Saunders, Philadelphia, S 184

    Google Scholar 

  • Fishman RA (1992b) Cerebrospinal fluid in diseases of the nervous system, 2. Aufl. Saunders, Philadelphia, S 204

    Google Scholar 

  • Forest MG (1992) Adrenal function tests. In: Ranke MB (Hrsg) Functional endocrinologic diagnostics in children and adolescents. J & J, Mannheim

    Google Scholar 

  • Förster C (1977) Zerebrale Anfälle. In: Reinhardt D (Hrsg) Therapie der Krankheiten im Kindes- und Jugendalter, 6. Aufl. Springer, Berlin/Heidelberg/New York/Tokyo, S 1128

    Google Scholar 

  • Ghoshal AK, Soldin SJ (2003) Evaluation of the Dade Behring Dimendion RxL integrated chemistry system - pediatric reference ranges. Clin Chim Acta 331:135–146

    CAS  PubMed  Google Scholar 

  • Goebell H, Beste M, Senker L (1985) Bestimmung von Chymotrypsin im Stuhl. Labormed Suppl 1:8–10

    Google Scholar 

  • Gressner AM, Manns M (1995) Leber und Gallenwege. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie, 3. Aufl. Schattauer, Stuttgart, S 543–609

    Google Scholar 

  • Guignard JP (1987) Neonatal nephrology. In: Holliday MA, Barratt TM, Vernier RL (Hrsg) Pediatric nephrology, 2. Aufl. Williams & Wilkins, Baltimore, S 921–927

    Google Scholar 

  • Hakulinen A (1971) Urinary excretion of vanilmandelic acid of children in normal and certain pathological conditions. Acta Paediatr Scand Suppl 212:31

    Google Scholar 

  • Hayabuchi Y, Matsuoka S, Akita H, Kurada Y (1993) Hyperuricaemia in cyanotic congenital heart disease. Eur J Pediatr 152:873–876

    CAS  PubMed  Google Scholar 

  • Heiduk M, Päge I, Kliem C, Klein G (2005) Reference interval for enzymes according to IFCC, sTfR and ferritin in children. European Congress of Clinical Chemisitry and Laboratory Medicine, May 2005, Glasgow

    Google Scholar 

  • Heil W, Ehrhardt V (2007) Referenzbereiche für Kinder und Erwachsene. Roche Diagnostics, S 54

    Google Scholar 

  • Heil W, Koberstein R, Zawta B (1998) Referenzbereiche für Kinder und Erwachsene. Boehringer, Mannheim

    Google Scholar 

  • Heil W, Koberstein R, Zawta B (2004) Referenzbereiche für Kinder und Erwachsene. Präanalytik. Roche Diagnostics, S 32–33. http://www.roche.de. Zugegriffen am 02.07.2007

  • Heine H, Hobusch D, Drescher U (1981) Eiweißgehalt des Liquors und Blut-Liquor-Relation der Glucose und Elektrolyte im Säuglings- und Kindesalter. Helv Paediatr Acta 36:217–227

    CAS  PubMed  Google Scholar 

  • Herbert V, Coman N (1985) Vitamin B12 and folacin radioassay in blood serum. In: Augustin J, Klei BO, Becker D, Venugopal PB (Hrsg) Methods of vitamin assay. Wiley, New York, S 515–534

    Google Scholar 

  • Heseker H (1993) Zur Bewertung von Vitaminversorgungsmeßgrößen. In: Kübler W, Anders HJ, Heeschen W, Kohlmeier M (Hrsg) VERA-Schriftenreihe, Bd IX. Dr. Fleck, Gießen, S 189

    Google Scholar 

  • Hoffmann GF (1996a) Organic acid analysis. In: Blau N, Duran M, Blaskovics ME (Hrsg) Physicians guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 50–51

    Google Scholar 

  • Hoffmann GF (1996b) Organic acid analysis. In: Blau N, Duran M, Blaskovics ME (Hrsg) Physicians guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 32

    Google Scholar 

  • Hoffmann GF (1996c) Organic acid analysis. In: Blau N, Duran M, Blaskovics ME (Hrsg) Physicians guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 36

    Google Scholar 

  • Hohenwallner W, Stein W, Hafkenscheid JC et al (1989) Reference ranges for alpha-amylase in serum and urine with 4,6-ethylidene-(G7)-1-4-nitrophenyl-(G1)-alpha, D-maltoheptaoside as substrate. J Clin Chem Clin Biochem 27:97–102

    CAS  PubMed  Google Scholar 

  • Jacobs DS, Kasten BL Jr, Demott WR, Wolfson WL (1990) Laboratory test handbook. Lexi-Comp, Hudson, S 514

    Google Scholar 

  • Jacobsen DW, Gatautis VJ, Green R et al (1994) Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects. Clin Chem 40:873–881

    CAS  PubMed  Google Scholar 

  • Jeppson JO (1996a) alpha1-Antitrypsin in serum proteins. In: Ritchie RF, Navolatskaia O (Hrsg) Clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 8.01-1–8.01-7

    Google Scholar 

  • Jeppson JO (1996b) Haptoglobin. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 7.04-1–7.04-6

    Google Scholar 

  • Jeppson JO, Aquzzi F (1996) Transferrin. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 9.02-1–9.02-8

    Google Scholar 

  • Ji AJ, Savon SR, Jacobsen DW (1995) Determination of total serum sulfite by HPLC with fluorescence detection. Clin Chem 41:897–903

    CAS  PubMed  Google Scholar 

  • Johnson AM (1996a) Coeruloplasmin. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 13.01-1–13.01-8

    Google Scholar 

  • Johnson AM (1996b) Complement component 4. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 10.02-1–10.02-11

    Google Scholar 

  • Jolley RL, Warren KS, Scott CD et al (1970) Carbohydrates in normal urine and blood serum as determined by high resolution column chromatography. Am J Clin Pathol 53:793–802

    CAS  PubMed  Google Scholar 

  • Jonetz-Mentzel L, Wiedemann G (1993) Establishment of reference ranges for cortisol in neonates, infants, children and adolescents. Eur J Clin Chem Clin Biochem 31:525–529

    CAS  PubMed  Google Scholar 

  • Käser H, Koblet H, Riva G (1963) Die Ausscheidung von Porphyrinpräkursoren im Urin bei Kindern verschiedenen Lebensalters. Schweiz Med Wochenschr 33:1052–1057

    Google Scholar 

  • Kawauchi A, Watanabe H, Miyoshi K (1996) Early morning urine osmolality in nonenuretic and enuretic children. Pediatr Nephrol 10:696–698

    CAS  PubMed  Google Scholar 

  • Keller H (1986) Klinisch-chemische Labordiagnostik für die Praxis. Thieme, Stuttgart, S 195

    Google Scholar 

  • Kleihauer E (1996) Anomale Hämoglobine und Thalassämiesyndrome. ecomed, Landsberg

    Google Scholar 

  • Klein G, Berger A, Bertholf R et al (2001) Multicenter evaluation of liquid reagents CK, CK-MB and LDH with determination of reference intervals on Hitachi Systems (abstract). Clin Chem 47(Suppl A30)

    Google Scholar 

  • Klein G, Heiduk M, Paege I, Kliem C (2005) Reference intervals for ALAT, ASAT, ALP, GGT, LDH, sTFR, and ferritin from infancy to childhood. Clin Chem 51(6):A118 (abstract)

    Google Scholar 

  • Kleine TO, Stroh J (1975) Fehlermöglichkeiten bei der Aufstellung von Normbereichen der Liquorproteine: Erfahrungen mit einer neuen Mikroelektrophorese für nativen Lumballiquor. Verh Dtsch Ges Inn Med 81:631–636

    CAS  PubMed  Google Scholar 

  • Kleine TO, Baerlocher K, Niederer V et al (1979) Diagnostische Bedeutung der Lactatbestimmung im Liquor bei Meningitis. Dtsch Med Wochenschr 104:553–557

    CAS  PubMed  Google Scholar 

  • Knip M, Akerblom H (1981) Plasma C-peptide and insulin in neonates, infants and children. J Pediatr 99:103–105

    CAS  PubMed  Google Scholar 

  • Kock R, Reinards R (1995) Vitamin-Stoffwechsel. In: Greiling H, Gressner M (Hrsg) Lehrbuch der Klinischen Chemie, 3. Aufl. Schattauer, Stuttgart, S 440

    Google Scholar 

  • Kock R, Schneider H, Delvoux B, Greiling H (1997) The determination of inorganic sulphate in serum and synovial fluid by high performance ion chromatography. Eur J Clin Chem Clin Biochem 35:679–685

    CAS  PubMed  Google Scholar 

  • Kolbe-Busch S, Lotz J, Hafner G et al (2002) Multicenter evaluation of a fully mechanized soluble transferrin receptor assay on the Hitachi and cobas integra analyzers. The determination of reference ranges Clin Chem Lab Med 40:529–536

    CAS  PubMed  Google Scholar 

  • Kraus E, Sitzmann FC (1973) Die sauere Phosphatase im Serum bei Kindern. Padiatr Prax 12:321–227

    Google Scholar 

  • Kravitz H, Elegant CD, Kaiser E, Kagan BM (1956) Methemoglobin values in premature and mature infants and children. Am J Dis Child 91:2–5

    Google Scholar 

  • Kruse K (1993) Vitamin D und Nebenschilddrüse. In: Ranke M (Hrsg) Endokrinologische Funktionsdiagnostik im Kindes- und Jugendalter. J & J, Mannheim, S 171

    Google Scholar 

  • Kruse K, Kracht U (1983) Die Hydroxyprolin-Ausscheidung im Morgenurin. Monatsschr Kinderheilkd 131:797–803

    CAS  PubMed  Google Scholar 

  • Kruse K, Kracht U, Kruse U (1984) Reference values for urinary calcium excretion and screening for hypercalciuria in children and adolescents. Eur J Pediatr 143:25–31

    CAS  PubMed  Google Scholar 

  • Kruse K, Kracht U, Kruse U (1988) Intaktes Serum-Parathormon (PTH 1–84). Dtsch Med Wochenschr 113:283–288

    CAS  PubMed  Google Scholar 

  • Kühnle HF, Dahl D, Schmidt FH (1977) Die enzymatische Bestimmung von Laktat und β-Hydroxybutyrat. J Clin Chem Clin Biochem 15:171

    Google Scholar 

  • Kureda Y, Ito M (1996) Disorders of histidine metabolism. In: Blau N, Duran M, Blaskovisc ME (Hrsg) Physicians guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 120

    Google Scholar 

  • Lang M, Heubner A, Dreher M (1989) Der entscheidende Marker in der Entzündungsdiagnostik. GIT Lab Med 3:77–81

    Google Scholar 

  • Lashansky G, Saenger P, Fishman F et al (1991) Normative data for adrenal steroidogenesis in a healthy pediatric population: age- and sex-related changes after adrenocorticotropin stimulation. J Clin Endocrinol Metab 73:675–686

    Google Scholar 

  • Lautala P, Akerblom HK, Viikari J et al (1985) Atherosclerosis precursers in Finnish children and adolescents. VII. Serum immunoreactive insulin. Acta Paediatr Scan Suppl 318:127–133

    CAS  Google Scholar 

  • Lehmann J, Martin HL (1982) Improved direct determination of alpha- and gamma-tocopherols in plasma and platelets by liquid chromatography, with fluorescence detection. Clin Chem 28:1784–1787

    CAS  PubMed  Google Scholar 

  • Lorentz K, Klauke R, Schmidt E (1993) Recommendation for the determination of the catalytic concentration of lactate dehydrogenase at 37 degrees C. Standardization Committee of the German Society for Clinical Chemistry, Enzyme Working Group of the German Society for Clinical Chemistry. Eur J Clin Chem Clin Biochem 31:897–899

    CAS  PubMed  Google Scholar 

  • Mabry CC, Tietz NW (1983) Reference ranges for laboratory tests. In: Behrmann RE, Vaughan VC (Hrsg) Nelson textbook of pediatrics, 12. Aufl. Saunders, Philadelphia

    Google Scholar 

  • Macy EM, Hayes TE, Tracy RP (1997) Variability in the measurement of C-reactive protein in healthy subjects: implications for reference intervals and epidemiological applications. Clin Chem 43:52–58

    CAS  PubMed  Google Scholar 

  • McGraw YM, Heubi JE (1996) Reference ranges for total serum bile acids in infants. Clin Chem 42:S307 (abstract)

    Google Scholar 

  • McGuiness GA, Weisz SC, Bell E (1983) CSF lactate levels in neonates. Effect of asphyxia, gestational age, and postnatal age. Am J Dis Child 137:48–50

    Google Scholar 

  • Meisner M, Tschaikowsky K, Schnabel S et al (1997) Procalcitonin – influence of temperature, storage, anticoagulation, and arterial or venous asservation of blood samples on procalcitonin concentrations. Eur J Clin Chem Clin Biochem 35:597–601

    CAS  PubMed  Google Scholar 

  • Meites S (1989a) Pediatric clinical chemistry. AACC Press, Washington, S 124

    Google Scholar 

  • Meites S (1989b) Pediatric clinical chemistry. AACC Press, Washington, S 153

    Google Scholar 

  • Meites S (1989c) Pediatric clinical chemistry: reference values, 3. Aufl. AACC Press, Washington, S 191

    Google Scholar 

  • Melocoton TL, Ettenger RB (1993) Renal transplantation in children. In: Burg FS, Ingelfinger JR, Wald ER (Hrsg) Gettis and Gagan’s current pediatric therapy. Saunders, Philadelphia, S 375

    Google Scholar 

  • Meng W (1997) Schilddrüse. In: Meng W, Ziegler R (Hrsg) Endokrinologie. Grundlagen, Klinik, Praxis. Fischer, Jena, S 140–142

    Google Scholar 

  • Misselwitz J, Hesse V, Markestad T (1990) Nephrocalcinosis, hypercalciuria and elevated serum levels of 1,25-dihydroxyvitamin D in children. Possible link to vitamin D toxicity. Acta Paediatr Scand 79:637–643

    CAS  PubMed  Google Scholar 

  • Müller-Oerlinghausen B (1966) Die Lithiumtherapie. Springer, Berlin/Heidelberg/New York/Tokyo, S 200

    Google Scholar 

  • Müller-Plathe O (1995) Wasser- und Elektrolytstoffwechsel. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie, 3. Aufl. Schattauer, Stuttgart, S 470–493

    Google Scholar 

  • Namgung R, Tsang RC, Specker BL et al (1994) Low bone mineral content and high serum osteocalcin, 1,25-dihydroxyvitamin D in summer- versus winter-born infants: an early fetal effect? J Pediatr Gastroenterol Nutr 19:220–227

    CAS  PubMed  Google Scholar 

  • National Cholesterol Education Program (NCEP) (1992) Highlights of the report of the expert panel on blood cholesterol in children and adolescent. Pediatrics 89:495–501

    Google Scholar 

  • Nelson JD (1997) Antibiotika für Kinder und Jugendliche. Ullstein Mosby, Berlin

    Google Scholar 

  • Nicholson JF, Besce MA (1996) Laboratory medicine and reference tables. In: Behrmann RE, Klingmann EM, Arvin AM (Hrsg) Nelson textbook of pediatrics, 15. Aufl. Saunders, Philadelphia, S 2051

    Google Scholar 

  • Nyhan WL (1996) Disorders of valine-isoleucine metabolism. In: Blau N, Duran M, Blaskovics ME (Hrsg) Physicians guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 145

    Google Scholar 

  • Olbing H (1987) Harnwegsinfektionen bei Kindern und Jugendlichen, 3. Aufl. Enke, Stuttgart

    Google Scholar 

  • Oster O (1981) The aluminium content of human serum determined by atomic absorption spectroscopy with a graphite furnace. Clin Chim Acta 114:53–60

    CAS  PubMed  Google Scholar 

  • Oster O (1992) Zum Selenstatus in der Bundesrepublik Deutschland. Universitätsverlag Jena, Jena

    Google Scholar 

  • Oster O (1995) Labor Klinische Chemie und Stoffwechseldiagnostik. Universitäts-Kinderklinik, Kiel

    Google Scholar 

  • Oster O (1998) Labor Klinische Chemie und Stoffwechseldiagnostik. Universitäts-Kinderklinik, Kiel

    Google Scholar 

  • Partsch CJ, Hümmelink R, Sippell WG (1990) Reference ranges of lutropin and follitropin in the lubilerin test in prepubertal and pubertal children using a monoclonal immunoradiometric assay. Eur J Clin Chem Clin Biochim 28:49–52

    CAS  Google Scholar 

  • Paunier L, Borgeaud M, Wyss M (1970) Urinary excretion of magnesium and calcium in normal children. Helv Paediatr Acta 6:577–584

    Google Scholar 

  • Penttilä K, Pentillä I, Bonnell R et al (1997) Comparison of the troponin T and troponin I ELISA tests, as measured by microplate immunoassay techniques, in diagnosing acute myocardial infarction. Eur J Clin Chem Clin Biochem 35:767–774

    PubMed  Google Scholar 

  • Pilz W (1974) Cholinesterasen. In: Bergmeyer HU (Hrsg) Methoden der enzymatischen Analyse. Weinheim, Verlag Chemie, S 862–883

    Google Scholar 

  • Pitkänen E, Kanninen T (1994) Determination of mannose and fructose in human plasma using deuterium labelling and gas-chromatography/mass spectrometry. Biol Mass Spectrom 23:590–595

    PubMed  Google Scholar 

  • Plenert W, Heine W (1984a) Normalwerte, 6. Aufl. Karger, Basel, S 150

    Google Scholar 

  • Plenert W, Heine W (1984b) Normalwerte, 6. Aufl. Karger, Basel, S 38

    Google Scholar 

  • Prellwitz W, Kapp S, Dennebaum R (1976) Methodische Untersuchungen und klinische Bedeutung des Blutammoniaks. Med Welt 27:1277–1282

    CAS  PubMed  Google Scholar 

  • Premel-Cabic A, Turcant A, Allain P (1986) Normal reference intervals for free catecholamines and their acid metabolites in 24-h urine from children as determined by liquid chromatography with amperometric detection. Clin Chem 32:1585–1587

    CAS  PubMed  Google Scholar 

  • Rauch F, Middelmann B, Cagnoli M et al (1997) Comparison of total alkaline phosphatase and three assays for bone-specific alkaline phosphatase in childhood and adolescence. Acta Paediatr 86:583–587

    CAS  PubMed  Google Scholar 

  • Reiber A (1995) External quality assessment in clinical neurochemistry: survey of analysis for cerobrospinal fluid (CSF) proteins based on CSF/Serum quotient. Clin Chem 41:256–263

    CAS  PubMed  Google Scholar 

  • Reusz GS, Dobos M, Byrd D et al (1995) Urinary calcium and oxalate excretion in children. Pediatr Nephrol 9:39–44

    CAS  PubMed  Google Scholar 

  • Richterich R, Colombo JP (1978) Klinische Chemie, 4. Aufl. Karger, Basel, S 439

    Google Scholar 

  • Riesen WF (2008) Fettstoffwechsel. In: Thomas L (Hrsg) Labor und Diagnose. TH-Books Verlagsgesellschaft, Frankfurt, S 232

    Google Scholar 

  • Rodgers RS, Laker MF, Fletcher K et al (1985) Factors influencing normal reference intervals for creatinine, urea and electrolytes in plasma, as measured with a Beckman Astra 8 analyzer. Clin Chem 32:292–296

    Google Scholar 

  • Roe T, Ng Won G (1996) Disorders of carbohydrate and glycogen metabolism. In: Blau N, Duran M, Blaskovics ME (Hrsg) Physician’s guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 289

    Google Scholar 

  • Routh IL (1982) Liver functions. In: Tietz NW (Hrsg) Fundamentals of clinical chemistry. Saunders, Philadelphia, S 1026–1062

    Google Scholar 

  • Rowe PC (1994) Laboratory values. In: Oski FA, DeAngelis CD, Feigin RD et al (Hrsg) Principles and practice of pediatrics, 2. Aufl. Lippincott, Philadelphia, S 2162

    Google Scholar 

  • Rubin MI, Baliah T (1975) Urine and urinanalysis. In: Rubin MI (Hrsg) Pediatric nephrology. Williams & Wilkens, Baltimore, S 84

    Google Scholar 

  • Rudd PT, Hughes EA, Placzek MM, Hodes DT (1983) Reference ranges for plasma creatinine during the first month of life. Arch Dis Child 58:212–215

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schirmeister J, Willmann H, Kiefer H, Hallauer W (1964) Für und wider die Brauchbarkeit der endogenen Creatininclearance in der funktionellen Nierendiagnostik. Dtsch Med Wochenschr 89:1640–1645

    CAS  PubMed  Google Scholar 

  • Schlebusch H, Sorger M, Liappis N et al (1990) Fructosamin-Referenzbereiche für Schwangere und Kinder bestimmt mit einer verbesserten NBF-Methode. Wiener Klin Wochenschr Suppl 180:52–57

    CAS  Google Scholar 

  • Schlebusch H, Liappis N, Kalina E, Klein C (2002) High Sensitive CRP and creatinine: reference Intervals from Infancy to childhood. Jour Lab Med 26:341–346

    CAS  Google Scholar 

  • Schmidt-Sommerfeld E, Werner D, Denn D (1988) Carnitine plasma concentrations in 353 metabolically healthy children. Eur J Pediatr 147:356–360

    CAS  PubMed  Google Scholar 

  • Schöni MH, Kraemer R, Bähler P (1984) Early diagnosis of cystic fibrosis by means of sweat microosmometry. J Pediatr 104:691–694

    PubMed  Google Scholar 

  • Schumann G, Klauke R (2003) New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: preliminary upper reference limits obtained in hospitalized patients. Clin Chim Acta 327:69–79

    CAS  PubMed  Google Scholar 

  • Schwartz GJ, Haycock GB, Spitzer A (1976) Plasma creatinine and urea concentration in children: normal values for age and sex. J Pediatr 88:828–830

    CAS  PubMed  Google Scholar 

  • Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104:849–854

    CAS  PubMed  Google Scholar 

  • Schwenk A (1966) Bestimmung von Kreatin und Kreatinin. In: Opitz H, Schmid F (Hrsg) Handbuch der Kinderheilkunde, Bd II/1. Springer, Berlin/Heidelberg/New York/Tokyo, S 738–742

    Google Scholar 

  • Shih VE (1996) Amino acid analysis. In: Blau N, Duran M, Blaskovics ME (Hrsg) Physicians guide to the laboratory diagnosis of metabolic diseases. Chapman & Hall, London, S 13–27

    Google Scholar 

  • Shih VW, Maudell R, Sheinhait I (1991) General metabolic screening tests. In: Hommes FA (Hrsg) Techniques in diagnostic human biochemical genetics. Wiley-Liss, New York, S 55

    Google Scholar 

  • Shin YS (1991) Galactose metabolites and disorders of galactose metabolism. In: Hommes FA (Hrsg) Techniques in diagnostic human biochemical genetics. Wiley-Liss, New York, S 396

    Google Scholar 

  • Shmerling DH, Forrer JWC, Prader A (1970) Fecal fat and nitrogen in healthy children with malabsorption or maldigestion. Pediatrics 46:690–695

    CAS  PubMed  Google Scholar 

  • Shwachman H, Dunham R, Phillips WR (1963) Electrical conductivity of sweat: a simple diagnostic test in children. Pediatrics 32:85–88

    CAS  PubMed  Google Scholar 

  • Simmonds HA, Duley IA, Davids DM (1991) Analysis of purines and pyrimidines in blood, urine and other physiological fluid. In: Hommes FA (Hrsg) Techniques in diagnostic human biochemical genetics. Wiley-Liss, New York, S 396

    Google Scholar 

  • Simon C, Stille W (1993) Antibiotikatherapie in Klinik und Praxis, 8. Aufl. Schattauer, Stuttgart, S 198

    Google Scholar 

  • Sippell WG, Dörr HG, Bidlingmaier F, Knorr D (1980) Plasma levels of aldosterone, corticosterone, 11-deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone during infancy and childhood. Pediatr Res 14:39–46

    CAS  PubMed  Google Scholar 

  • Sitzmann FC (1986) Normalwerte, 2. Aufl. Marseille-Verlag, München, S 37

    Google Scholar 

  • Soldin SJ, Morales A, Albalos F et al (1995) Pediatric reference ranges on the Abbott IMx for FSH, LH, prolactin, TSH, T4, T3, free T4, free T3, T-uptake, IgE and ferritin. Clin Biochem 28:603–606

    CAS  PubMed  Google Scholar 

  • Soldin OP, Bierbower LH, Choi JJ et al (2004) Serum iron, ferritin, transferrin, total iron binding capacity, hs-CRP, LDL cholesterol and magnesium in children: new reference intervals using the Dade Dimension Clinical Chemistry System. Clin Chim Acta 342:211–217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sorell M, Rosen JF (1975) Ionized calcium: serum levels during symptomatic hypocalcemia. J Pediatr 87:67–70

    CAS  PubMed  Google Scholar 

  • Srinivasan G, Pildes RS, Cattamanchi G et al (1986) Plasma glucose values in normal neonates: a new look. J Pediatr 109:114–117

    CAS  PubMed  Google Scholar 

  • Stur O (1961) Elektrolytkonzentrationen im Schweiß von Neugeborenen. Oest Z Kinderheilkd 6:346–355

    Google Scholar 

  • Tencer J, Thysell H, Grubb A (1996) Analysis of proteinuria: reference limits for urine excretion of albumin, protein HC, immunoglobulin G, kappa- and lambda-immunoreactivity, orosomucoid and alpha 1-antitrypsin. Scand J Clin Lab 56:691–700

    CAS  Google Scholar 

  • Thomas L (1981) Serumeiweiß-Elektrophorese. Urban & Schwarzenberg, München

    Google Scholar 

  • Thomas L (1995) Proteindiagnostik: views and reviews 1/95. Behring-Werke, Marburg

    Google Scholar 

  • Thomas L (1998) Labor und Diagnose, 5. Aufl. TH-Books, Frankfurt a. M, S 491

    Google Scholar 

  • Thomas L, Müller M, Schumann G, Weidemann G et al (2005) Consensus of DGKL and VDGH for interim reference intervals on enzymes in serum. J Lab Med 29:301–308

    CAS  Google Scholar 

  • Tietz NW (1986) Textbook of clinical chemistry. Saunders, Philadelphia

    Google Scholar 

  • Uffelman JA, Engelhard WE, Jollif CR (1979) Quantitation of immunoglobulins in normal children. Clin Chim Acta 28:185

    Google Scholar 

  • van Heyningen C, Hanid TK, Hopkinson I (1986) Glycosylated haemoglobin by affinity chromatography in diabetic and non-diabetic children. Ann Clin Biochem 23:425–428

    PubMed  Google Scholar 

  • Veit S, Sitzmann F, Prestele HT (1975) Normalwerte für Lactat- und Glutamatdehydrogenase sowie Leucinarylamidase, erstellt mit optimierten Standardansätzen. Klin Padiatr 187:244–251

    CAS  PubMed  Google Scholar 

  • Vilaseca MA, Moyano D, Ferrer I, Artuch R (1997) Total homocysteine in pediatric patients. Clin Chem 43:690–692

    CAS  PubMed  Google Scholar 

  • von Schnakenburg K, Bidlingmaier F, Knorr D (1980) 17-hydroxyprogesterone, androstenedione and testosterone in normal children and in prepubertal patients with congenital adrenal hyperplasia. Eur J Pediat 133:259–267

    Google Scholar 

  • Weber H (1960) Über die Beziehung zwischen Phosphat- und Säureausscheidung im Harn bei gesunden und kranken Kindern. Helv Paediatr Acta 15:186

    CAS  PubMed  Google Scholar 

  • Weißhaar HD, Sudhoff H, Koller PU, Bablok W (1981) Pankreaslipase: Referenzwerte für 25 °C. Dtsch Med Wochenschr 106:239–241

    PubMed  Google Scholar 

  • Whicher J (1996) Complement component C3. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 10.01-1–10.01-7

    Google Scholar 

  • Whicher J, Bienvenu J (1996) Orosomucoid. In: Ritchie RF, Navolotskaia O (Hrsg) Serum proteins in clinical medicine, Bd I. Foundation of Blood Research, Scarborough, S 7.03-1–7.03-5

    Google Scholar 

  • WHO, UNICEF, ICCIDD (1993/1994) Indicators for assessing iodine deficiency disorders and their control programmes WHO/NVT 93.1, 1–33 und 94.6, 26–36

    Google Scholar 

  • Wiedemann G, Jonetz-Mentzel L (1993a) Establishment of reference ranges for prolactin in neonates, infants, children and adolescents. Eur J Clin Chem Clin Biochem 31:447–451

    CAS  PubMed  Google Scholar 

  • Wiedemann G, Jonetz-Mentzel L (1993b) Establishment of reference ranges for ferritin in neonates, infants, children and adolescents. Eur J Clin Chem Clin Biochem 31:453–457

    CAS  PubMed  Google Scholar 

  • Wiedemann G, Wetzel D (1994) Erstellung von Referenzbereichen für alpha-Amylase und Lipase bei Neugeborenen, Säuglingen, Kindern und Jugendlichen. Lab Med 18:270–274

    CAS  Google Scholar 

  • Wiedemann G, Jonetz-Mentzel L, Panse R (1993) Establishment of reference ranges for thyrotropin, triiodothyronine, thyroxine and free thyroxine in neonates, infants, children and adolescents. Eur J Clin Chem Clin Biochem 31:277–288

    CAS  PubMed  Google Scholar 

  • Wiedemann G, Börner B, Wetzel D (1996) Untersuchungen zur Ermittlung von Referenzbereichen diagnostisch wichtiger Urinproteine gesunder Kinder und Jugendlicher im Alter von 2 bis 12 Jahren. Diagn Digest 15:31–34

    Google Scholar 

  • Wiese G (1983) Die Hyperbilirubinämie des Neugeborenen. Monatsschr Kinderheilkd 131:193–203

    CAS  PubMed  Google Scholar 

  • Wilms B, Lehmann P (1990) Neuer Fructosamin-Test – als Routineparameter in der Diabetikerkontrolle. Wiener Klin Wochenschr Suppl 180:5–10

    Google Scholar 

  • Witt I, Trendelenburg C (1982) Gemeinsame Studie zur Erstellung von Richtwerten für klinisch-chemische Kenngrößen im Kindesalter. J Clin Chem Clin biochem 20:235–243

    CAS  PubMed  Google Scholar 

  • Working Group of Enzymes, German Society for Clinical Chemistry (1992) Proposal of standard method for the determination of enzyme catalytic concentrations in serum and plasma at 37degrees C. II. Cholinesterase (acylcholine acylhydrolase EC 3.1.1.8.). Eur J Clin Chem Clin Biochem 30:163–170

    Google Scholar 

  • Wu JT, Book L, Sudar K (1981) Serum alpha fetoprotein (AFP) levels in normal infants. Pediatr Res 15:50–52

    CAS  PubMed  Google Scholar 

  • Wu AH, Laios I, Green S et al (1994) Immunoassays for serum and urine myoglobin: myoglobin clearance assessed as a risk factor for acute renal failure. Clin Chem 40:796–802

    CAS  PubMed  Google Scholar 

  • Wudy SA, Wachter UA, Homoki J, Teller WM (1996) 5alpha-androstane-3 alpha, 17beta-diol and 5alpha-androstane-3alpha, 17beta-diol-glucoronide in plasma of normal children, adults and patients with idiopathic hirsutism: a mass spectrometric study. Eur J Endocrinol 134:87–92

    CAS  PubMed  Google Scholar 

  • Zielen S, Ahrens P, Kotitschke R et al (1990) IgG-Subklassenspiegel bei gesunden Kindern. Monatsschr Kinderheilkd 138:377–380

    CAS  PubMed  Google Scholar 

  • Zielen S, Ahrens P, Hofmann D (1991) Bestimmung der IgG-Subklassen mit einem kommerziellen ELISA-Kit. Vergleich der Referenzbereiche zwischen RID und ELISA. Lab Med 15:299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Oster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Oster, O. (2015). Therapeutische Bereiche von Medikamenten in der Pädiatrie. In: Hoffmann, G., Lentze, M., Spranger, J., Zepp, F. (eds) Pädiatrie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54671-6_356-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54671-6_356-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-54671-6

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics