Skip to main content

Quantitative sensorische Testung (QST)

Praktische Schmerzmedizin
  • 564 Accesses

Zusammenfassung

Die quantitative sensorische Testung (QST) unterscheidet sich von der klinisch-neurologischen Sensibilitätsprüfung durch eine stärkere Formalisierung des Untersuchungsablaufs, die Verwendung von kalibrierten Reizstärken und die Standardisierung der Instruktionen für den Patienten. Auch wenn die Reize teilweise durch einen Computer gesteuert werden, bleibt die Methode abhängig von den subjektiven Angaben der Patienten. Die Standardisierung der QST-Methodik führt jedoch zu reproduzierbaren und vom Untersucher unabhängigen Befunden. Ähnlich wie die klinische Sensibilitätsprüfung soll QST alle Submodalitäten der Somatosensorik erfassen (Tastsinn, Propriozeption, Temperatursinn, Nozizeption). Das Muster von Funktionsverlust und Funktionssteigerung der Somatosensorik erlaubt Rückschlüsse auf die zugrundeliegenden pathophysiologischen Mechanismen: Läsion dicker Afferenzen oder des Hinterstrangsystems, Läsion dünner Afferenzen oder des Vorderseitenstrangsystems, periphere Sensibilisierung, zentrale Sensibilisierung, Defizit der endogenen Schmerzhemmung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Baron R, Wasner G (1998) Quantitative Thermotestung. Untersuchung der thermosensiblen und nozizeptiven Afferenzen bei Neuropathien. Schmerz 12: 209–211

    Article  CAS  PubMed  Google Scholar 

  • Baumgärtner U, Magerl W, Klein T, Hopf HC, Treede RD (2002) Neurogenic hyperalgesia versus painful hypoalgesia: two distinct mechanisms of neuropathic pain. Pain 96: 141–151

    Article  PubMed  Google Scholar 

  • Beise RD, Carstens E, Kohllöffel LUE (1998) Psychophysical study of stinging pain evoked by brief freezing of superficial skin and ensuing short-lasting changes in sensations of cool and cold pain. Pain 74: 275–286

    Article  CAS  PubMed  Google Scholar 

  • Chan AW, MacFarlane IA, Bowsher D, Campbell JA (1992) Weighted needle pinprick sensory thresholds: a simple test of sensory function in diabetic peripheral neuropathy. J Neurol Neurosurg Psychiat 55: 56–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, Haanpää M, Jensen TS, Serra J, Treede RD (2010) EFNS guidelines on neuropathic pain assessment; revised 2009. Eur J Neurol 17: 1010–1018.

    Article  CAS  PubMed  Google Scholar 

  • Frost SA, Raja SN, Campbell JN, Meyer RA, Khan AA (1988) Does hyperalgesia to cooling stimuli characterize patients with sympathetically maintained pain (reflex sympathetic dystrophy)? In: Dubner R, Gebhart GF, Bond MR (eds) Proceedings of the Vth World Congress on Pain. Elsevier, Amsterdam, pp 151–156

    Google Scholar 

  • Fruhstorfer H, Lindblom U, Schmidt WG (1976) Method for quantitative estimation of thermal thresholds in patients. J Neurol Neurosurg Psychiat 39: 1071–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fruhstorfer H, Gross W, Selbmann O (2001) von Frey hairs: new materials for a new design. Eur J Pain 5: 341–342

    Article  CAS  PubMed  Google Scholar 

  • Geber C, Scherens A, Pfau D, Nestler N, Zenz M, Tolle T, Baron R, Treede RD, Maier C (2009) Procedure for certification of QST laboratories. Schmerz 23: 65–69

    Article  CAS  PubMed  Google Scholar 

  • Gracely RH, Grant MAB, Giesecke T (2003) Evoked pain measures in fibromyalgia. Best Practice & Res Clinl Rheumatol 17: 593–609

    Article  Google Scholar 

  • Greenspan JD, Mcgillis SLB (1991) Stimulus features relevant to the perception of sharpness and mechanically evoked cutaneous pain. Somatosens Motor Res 8: 137–147

    Article  CAS  Google Scholar 

  • Hansson P (2002) Neuropathic pain: clinical characteristics and diagnostic workup. Eur J Pain 6, Suppl A: 47–50

    Google Scholar 

  • Jensen TS, Baron R (2003) Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102: 1–8

    Article  PubMed  Google Scholar 

  • Koltzenburg M, Lundberg LER, Torebjörk HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 51: 207–219

    Article  CAS  PubMed  Google Scholar 

  • Magerl W, Krumova EK, Baron R, Tölle T, Treede RD, Maier C (2010) Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain 151: 598–605

    Article  PubMed  Google Scholar 

  • Maier C, Baron R, Tölle TR, Binder A, Birbaumer N, Birklein F, Giertmühlen J, Flor H, Geber C, Huge V, Krumova EK, Landwehrmeyer GB, Magerl W, Maihöfner C, Richter H, Rolke R, Scherens A, Schwarz A, Sommer C, Tronnier V, Üceyler N, Valet M, Wasner G, Treede RD (2010) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150: 439–450

    Article  CAS  PubMed  Google Scholar 

  • Merskey H, Albe-Fessard D, Bonica JJ, Carmon A, Dubner R, Kerr FWL, Lindblom U, Mumford JM, Nathan PW, Noordenbos W, Pagni CA, Renaer MJ, Sternbach RA, Sunderland S (1979) Pain terms: a list with definitions and notes on usage. Recommended by the IASP subcommittee on taxonomy. Pain 6: 249–252

    Article  Google Scholar 

  • Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33: 465–472

    Article  CAS  PubMed  Google Scholar 

  • Perkins BA, Bril V (2003) Diabetic neuropathy: a review emphasizing diagnostic methods. Clin Neurophysiol 114: 1167–1175

    Article  PubMed  Google Scholar 

  • Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, Ramneantu I, Waheed W, Stambuk M (2004) Sensory exam with a quantitative tuning fork. Rapid, sensitive and predictive of SNAP amplitude. Neurology 62: 461–464

    Article  CAS  PubMed  Google Scholar 

  • Pfau DB, Geber C, Birklein F, Treede RD (2012) Quantitative sensory testing of neuropathic pain patients: potential mechanistic and therapeutic implications. Curr Pain Headache Rep 16: 199–206

    Article  PubMed  Google Scholar 

  • Rolke R, Magerl W, Andrews-Campbell K, Schalber C, Caspari S, Birklein F, Treede RD (2006) Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain 10: 77–88

    Article  CAS  PubMed  Google Scholar 

  • Shy ME, Frohman EM, So YT, Arezzo JC, Cornblath DR, Giuliani MJ, Kincaid JC, Ochoa JL, Parry GJ, Weimer LH (2003) Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 60: 898–904

    Article  CAS  PubMed  Google Scholar 

  • Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483: 747–758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Treede RD, Rolke R, Andrews K, Magerl W (2002) Pain elicited by blunt pressure: neurobiological basis and clinical relevance. Pain 98: 235–240

    Article  PubMed  Google Scholar 

  • Treede RD, Handwerker HO, Baumgärtner U, Meyer RA, Magerl W (2004) Hyperalgesia and allodynia: taxonomy, assessment, and mechanisms. In: Brune K, Handwerker HO (eds) Hyperalgesia: molecular mechanisms and clinical implications. IASP Press, Seattle, pp 1–15

    Google Scholar 

  • Yarnitsky D (1997) Quantitative sensory testing. Muscle Nerve 20: 198–204

    Article  CAS  PubMed  Google Scholar 

  • Yarnitsky D, Sprecher E (1994) Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci 125: 39–45

    Article  CAS  PubMed  Google Scholar 

  • Yarnitsky D, Sprecher E, Zaslansky R, Hemli JA (1995) Heat pain thresholds: Normative data and repeatability. Pain 60: 329–332

    Article  CAS  PubMed  Google Scholar 

  • Ziegler D, Mayer P, Gries FA (1988) Evaluation of thermal, pain, and vibration sensation thresholds in newly diagnosed type 1 diabetic patients. J Neurol Neurosurg Psychiat51: 1420–1424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziegler EA, Magerl W, Meyer RA, Treede RD (1999) Secondary hyperalgesia to punctate mechanical stimuli: Central sensitization to A – fibre nociceptor input. Brain 122: 2245–2257

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf-Detlef Treede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Treede, RD. (2014). Quantitative sensorische Testung (QST). In: Baron, R., Koppert, W., Strumpf, M., Willweber-Strumpf, A. (eds) Praktische Schmerzmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54670-9_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54670-9_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-54670-9

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Psychophysische und Neurophysiologische Messverfahren in der Schmerzmedizin
    Published:
    05 December 2018

    DOI: https://doi.org/10.1007/978-3-642-54670-9_9-2

  2. Original

    Quantitative sensorische Testung (QST)
    Published:
    27 October 2014

    DOI: https://doi.org/10.1007/978-3-642-54670-9_9-1