Skip to main content

Carbon Dioxide Capture in Porous Aromatic Frameworks

  • Chapter
  • First Online:
Porous Materials for Carbon Dioxide Capture

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Porous solids have been proved to be good candidates as the carbon dioxide recycling sorbents. In the last decades, many efforts were devoted to improving the surface area and heat of adsorption of artificial porous materials. Among those synthesized porous solids with ultrahigh surface area, porous aromatic frameworks (PAFs) possess ultrahigh Brunauer–Emmett–Teller (BET) surface area and excellent physicochemical stability, which can meet the criteria of carbon dioxide storage and separation. PAFs are the new generation of a whole new class of organic networks with an intrinsic nanoporosity. They are characterized by a rigid aromatic open-framework structure constructed by covalent bonds that remain accessible to small molecules. In this chapter, the design, synthesis, and carbon dioxide adsorption properties of PAFs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids. Wiley-VCH, New York

    Book  Google Scholar 

  2. Valtchev V, Mintova S, Tsapatsis M (2009) Ordered porous solids: recent advances and prospects. Elsevier B. V, Oxford

    Google Scholar 

  3. Li J, Sculley J, Zhou H (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  Google Scholar 

  4. Suh MP, Park HJ, Prasad TK, Lim D (2012) Hydrogen storage metal-organic frameworks. Chem Rev 112:782–835

    Article  Google Scholar 

  5. Makowski P, Thomas A, Kuhn P, Goettmann F (2009) Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption organic molecules. Energy Environ Sci 2:480–490

    Article  Google Scholar 

  6. Ding X, Guo J, Feng X, Honsho Y, Guo J, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D (2011) Bowl-shaped fragments of C70 or higher fullerenes: synthesis, structural analysis, and inversion dynamics. Angew Chem Int Ed 50:1289–1293

    Article  Google Scholar 

  7. Wan S, Guo J, Kim J, Ihee H, Jiang D (2009) A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D Polypyrene sheets for photocurrent generation. Angew Chem Int Ed 48:5439–5442

    Google Scholar 

  8. Comotti A, Bracco S, Valsesia P, Beretta M, Sozzani P (2010) Fast molecular rotor dynamics modulated by guest inclusion in a highly organized nanoporous organosilica. Angew Chem Int Ed 49:1760–1764

    Google Scholar 

  9. Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231

    Article  Google Scholar 

  10. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–715

    Article  Google Scholar 

  11. Mulfort KL, Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) An interpenetrated framework material with hysteretic CO2 uptake. Chem Eur J 16:276–281

    Google Scholar 

  12. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J, Hwang YK, Marsaud V, Bories P, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178

    Article  Google Scholar 

  13. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170

    Article  Google Scholar 

  14. El-Kaderi HM, Hunt JR, Medoza-Cortés JL, Côté AP, Taylor RE, O’Keeffe M, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316:268–272

    Article  Google Scholar 

  15. Wan S, Guo J, Kim J, Ihee H, Jiang D (2008) A Belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew Chem Int Ed 47:8826–8830

    Google Scholar 

  16. McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11:2610–2620

    Google Scholar 

  17. McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35:675–683

    Article  Google Scholar 

  18. Jiang J, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly (aryleneethynylene) networks. Angew Chem Int Ed 46:8574–8578

    Google Scholar 

  19. S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang (2008) A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2d polypyrene sheets for photocurrent generation. Angew Chem Int Ed 47:8826–8830

    Google Scholar 

  20. Chen L, Honsho Y, Seki S, Jiang D (2010) Conjugated microporous polymer. J Am Chem Soc 132:6742–6748

    Article  Google Scholar 

  21. Cooper AI (2009) Conjugated microporous polymers. Adv Mater 21:1291–1295

    Article  Google Scholar 

  22. Jiang JX, Su F, Trewin A, Wood CD, Niu H, Jones TA, Khimyak YZ, Cooper AI (2008) Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J Am Chem Soc 130:7710–7720

    Article  Google Scholar 

  23. Dawson R, Laybourn A, Clowes R, Khimyak YZ, Adams DJ, Cooper AI (2009) Functionalized conjugated microporous polymers. Macromolecules 42:8809–8816

    Article  Google Scholar 

  24. Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048

    Article  Google Scholar 

  25. Tsyurupa MP, Davankov VA (2002) Hypercrosslinked polymers: basic principle of preparing the new class of polymeric materials. React Funct Polym 53:193–203

    Article  Google Scholar 

  26. Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 48:9457–9461

    Article  Google Scholar 

  27. Ren H, Ben T, Wang E, Jing X, Xue M, Liu B, Cui Y, Qiu S, Zhu G (2010) Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chem Commun 46:291–293

    Article  Google Scholar 

  28. Peng Y, Ben T, Xu J, Xue M, Jing X, Deng F, Qiu S, Zhu G (2011) A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. Dalton Trans 40:2720–2724

    Article  Google Scholar 

  29. Ben T, Pei C, Zhang D, Xu J, Deng F, Jing X, Qiu S (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4:991–3999

    Article  Google Scholar 

  30. Ben T, Shi K, Cui Y, Pei C, Zuo Y, Guo H, Zhang D, Xu J, Deng F, Tian Z, Qiu S (2011) Targeted synthesis of an electroactive organic framework. J Mater Chem 21:18208–18214

    Article  Google Scholar 

  31. Ren H, Ben T, Sun F, Guo M, Jing X, Ma H, Cai K, Qiu S, Zhu G (2011) Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J Mater Chem 21:10348–10353

    Article  Google Scholar 

  32. Yuan Y, Sun F, Ren H, Jing X, Wang W, Ma H, Zhao H, Zhu G (2011) Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. J Mater Chem 21:13498–13502

    Article  Google Scholar 

  33. Zhao H, Jin Z, Su H, Jing X, Sun F, Zhu G (2011) Targeted synthesis of a 2D ordered porous organic framework for drug release. Chem Commun 47:6389–6391

    Article  Google Scholar 

  34. Kondo M, Yoshitomi T, Seki K, Matsuzaka H, Kitagawa S (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew Chem Int Ed 36:1725–1727

    Article  Google Scholar 

  35. Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J Am Chem Soc 120:8571–8572

    Article  Google Scholar 

  36. Chui SS, Lo SM, Charmant JP, Orpen HAG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    Article  Google Scholar 

  37. McKeown NB, Makhseed S, Budd PM (2002) Phthalocyanine-based nanoporous network polymers. Chem Commun 23:2780–2781

    Article  Google Scholar 

  38. Ahn JH, Jang JE, Oh CG, Ihm SK, Cortez J, Sherrington DC (2006) Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules 39:627–632

    Article  Google Scholar 

  39. Davankov VA, Tsyurupa MP (1990) Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. React Polym 13:27–42

    Article  Google Scholar 

  40. Yamamoto T (1999) π-conjugated polymers bearing electronic and optical functionalities. Preparation by organometallic polycondensations, properties, and their applications. Bull Chem Soc Jpn 72:621–638

    Article  Google Scholar 

  41. Zhou G, Baumgarten M, Müllen K (2007) Arylamine-substituted oligo(ladder-type pentaphenylene)s: electronic communication between bridged redox centers. J Am Chem Soc 129:12211–12221

    Article  Google Scholar 

  42. IPCC Climate Change (2007) Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change [Core Writing Team ed. Pachauri RK, Reisinger A] Intergovernmental panel on climate change, Geneva, Switzerland, 2007

    Google Scholar 

  43. IPCC (Intergovernmental Panel on Climate Change) (2005) CO2 capture and storage, a special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  44. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781

    Article  Google Scholar 

  45. Li J, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  Google Scholar 

  46. Wright PA (2008) Microporous framework solids. Royal Society of Chemistry, Cambridge

    Google Scholar 

  47. Bunz UHF(2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100:1605–1644

    Google Scholar 

  48. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  49. Trumbo DL, Marvel CS (1986) Polymerization using palladium (II) salts: Homopolymers and copolymers from phenylethynyl compounds and aromatic bromides. J Polym Sci Part A: Polym Chem 24:2311–2326

    Article  Google Scholar 

  50. Hittinger E, Kokil A, Weder C (2004) Synthesis and characterization of cross-linked conjugated polymer milli-, micro-, and nanoparticles. Angew Chem Int Ed 43:1808–1811

    Google Scholar 

  51. Mendez JD, Schroeter M, Weder C (2007) Hyperbranched Poly(p-phenylene ethynylene)s. Macromol Chem Phys 208:1625–1636

    Article  Google Scholar 

  52. Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW, Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Conductance switching in single molecules through conformational changes. Science 292:2303–2307

    Article  Google Scholar 

  53. Zhou Q, Swager TM (1995) Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem Soc 117:12593–12602

    Article  Google Scholar 

  54. Venkataraman D, Lee S, Zhang JS, Moore JS (1994) An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature 371:591–593

    Article  Google Scholar 

  55. Zhang W, Moore JS (2006) Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. Angew Chem Int Ed 45:4416–4439

    Google Scholar 

  56. Kiang YH, Gardner GB, Lee S, Xu ZT, Lobkovsky EB (1999) Variable pore size, variable chemical functionality, and an example of reactivity within porous phenylacetylene silver salts. J Am Chem Soc 121:8204–8215

    Article  Google Scholar 

  57. Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 36:343

    Google Scholar 

  58. Miyaura N, Yanagi T, Suzuki A (1981) The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth Commun 11:513–519

    Article  Google Scholar 

  59. Zhang H, Xue F, Mak TCW, Chan KS (1996) Enantioselectivity increases with reactivity: electronically controlled asymmetric addition of diethylzinc to aromatic aldehydes catalyzed by a chiral pyridylphenol. J Org Chem 1996(61):8002–8003

    Article  Google Scholar 

  60. Zhang H, Chan KS (1996) Enantioselectivity increases with reactivity: electronically controlled asymmetric addition of diethylzinc to aromatic aldehydes catalyzed by a chiral pyridylphenol. Tetrahedron Lett 37:1043–1044

    Article  Google Scholar 

  61. Badone D, Baroni M, Cardamone R, Ielmini A, Guzzi U (1997) Highly efficient palladium-catalyzed boronic acid coupling reactions in water: scope and limitations. J Org Chem 62:7170–7173

    Google Scholar 

  62. Casalnuovo AL, Calabrese JC (1999) Palladium-catalyzed alkylations in aqueous media. J Am Chem Soc 112:4324–4330

    Article  Google Scholar 

  63. Yamada YMA, Takeda K, Takahashi H, Ikegami S (2002) An assembled complex of palladium and non-cross-linked amphiphilic polymer: a highly active and recyclable catalyst for the Suzuki–Miyaura Reaction. Org Lett 4:3371–3374

    Article  Google Scholar 

  64. Frenette R, Friesen RW (1994) Biaryl synthesis via Suzuki coupling on a solid support. Tetrahedron Lett 35:9177–9180

    Article  Google Scholar 

  65. Ishiyama T, Murata M, Miyaura N (1995) Palladium (0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes—A direct procedure for arylboronic esters. J Org Chem 60:7508–7510

    Article  Google Scholar 

  66. Ishiyama T, Itoh Y, Kitano T, Miyaura N (1997) Synthesis of arylboronates via the Palladium(0)-catalyzed cross-coupling reaction of tetra(alkoxo)diborons with aryl triflates. Tetrahedron Lett 38:3447–3450

    Article  Google Scholar 

  67. Holst JR, Stö̈ckel E, Adams DJ, Cooper AI (2010) Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Macromolecules 43:8531–8538

    Google Scholar 

  68. Yuan D, Lu W, Zhao D, Zhou H (2011) Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater 23:3723–3725

    Article  Google Scholar 

  69. Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou H (2011) Sulfonate-grafted polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133:18126–18129

    Article  Google Scholar 

  70. Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121–127

    Google Scholar 

  71. Bae YS, Farha OK, Hupp JT, Snurr RQ (2009) Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19:2131–2134

    Article  Google Scholar 

  72. Yazaydin AO, Benin AI, Faheem SA, Jakubczak P, Low JJ, Willis RR, Snurr RQ (2009) Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem Mater 21:1425–1430

    Article  Google Scholar 

  73. Zheng BS, Bai JF, Duan JG, Wojtas L, Zaworotko MJ (2011) Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acrylamide groups. J Am Chem Soc 133:748–751

    Article  Google Scholar 

  74. Simmons JM, Wu H, Zhou W, Yildirim T (2011) Carbon capture in metal-organic frameworks: a comparative study. Energy Environ Sci 4:2177–2185

    Article  Google Scholar 

  75. Krishna R, van Baten JM (2011) In silico screening of metal-organic frameworks in separation applications. Phys Chem Chem Phys 13:10593–10616

    Article  Google Scholar 

  76. Belmabkhout Y, Sayari A (2009) Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorption 15:318–328

    Article  Google Scholar 

  77. Goj A, Sholl DS, Akten ED, Kohen DI (2002) Atomistic simulations of CO2 and N2 adsorption in silica zeolites: the impact of pore size and shape. J Phys Chem B 106:8367–8375

    Article  Google Scholar 

  78. Belmabkhout Y, Pirngruber G, Jolimaitre E, Methivier A (2007) A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments. Adsorption 13:341–349

    Article  Google Scholar 

  79. Konstas K, Taylor JW, Thornton AW, Doherty CM, Lim WX, Bastow TJ, Kennedy DF, Wood CD, Cox BJ, Hill JM, Hill AJ, Hill MR (2012) Lithiated porous aromatic frameworks with exceptional gas storage capacity. Angew Chem Int Ed 51:6639–6642

    Article  Google Scholar 

  80. Li A, Lu R-F, Wang Y, Wang X, Han K-L, Deng WQ (2010) Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem Int Ed 49:3330–3333

    Google Scholar 

  81. Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou H-C (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 2012(51):7480–7484

    Article  Google Scholar 

  82. McDonald TM, D’Alessandro DM, Krishna R, Long JR (2011) Enhanced carbon dioxide capture upon incorporation of N, N′-Dimethylethylenediamine in the metal-organic framework CuBTTri. Chem Sci 2:2022–2028

    Article  Google Scholar 

  83. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 2:1645–1669

    Article  Google Scholar 

  84. Socolow RH et al (2011) American Physical Society, College Park, MD, 1 June 2011

    Google Scholar 

  85. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781

    Article  Google Scholar 

  86. Lu W, Sculley JP, Yuan D, Krishna R, Zhou H (2013) Carbon dioxide capture from air using amine-grafted porous polymer networks. J Phys Chem C 117:4057–4061

    Google Scholar 

  87. Krishna R, Long JR (2011) Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber. J Phys Chem C 115:12941–12950

    Google Scholar 

  88. Ben T, Li Y, Zhu L, Zhang D, Cao D, Xiang Z, Yao X, Qiu S (2012) Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ Sci 5:8370–8376

    Article  Google Scholar 

  89. Xiang Z, Peng X, Cheng X, Li X, Cao D (2011) Gas separation by adsorption on MIL-53(Al): natural gas and biogas application. J Phys Chem C 115:19864–19871

    Google Scholar 

  90. Burd SD, Ma S, Perman JA, Sikora BJ, Snurr RQ, Thallapally PK, Tian J, Wojtas L, Zaworotko MJ (2012) Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4′-Bipyridine; bpy-2 = 1,2-Bis(4-pyridyl)ethene). J Am Chem Soc 134:3663–3666

    Article  Google Scholar 

  91. Simmons JM, Wu H, Zhou W, Yildirim T (2011) Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. Energy Environ Sci 4:2177–2182

    Article  Google Scholar 

  92. Li JR, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    Article  Google Scholar 

  93. Bae YS, Farha OK, Hupp JT, Snurr RQ (2009) Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19:2131–2134

    Article  Google Scholar 

  94. Nicholson D, Gubbins KEJ (1996) A microporous metal-organic frameworks for separation of CO2/N2 and CO2/CH4 by 51-2. J Chem Phys 104:8126–8134

    Article  Google Scholar 

  95. Heuchel M, Davies GM, Buss E, Seaton NA (1999) Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: simulation and experiment. Langmuir 15:8695–8705

    Article  Google Scholar 

  96. Babarao R, Hu ZQ, Jiang JW, Chempath S, Sandler SI (2007) A comparative study from Monte Carlo simulation. Langmuir 23:659–666

    Article  Google Scholar 

  97. Shao XH, Feng ZH, Xue RS, Ma CC, Wang WC, Peng X, Cao DP (2011) Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads: preparation measurements and simulation. AIChE J 57:3042–3051

    Article  Google Scholar 

  98. Belmabkhout Y, Pirngruber G, Jolimaitre E, Methivier A (2007) A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments. Adsorption 13:341–349

    Article  Google Scholar 

  99. Wu J, Zhou L, Sun Y, Su W, Zhou Y (2007) Measurement and prediction of adsorption equilibrium for a H2/N2/CH4/CO2 mixture. AIChE J 53:1178–1191

    Article  Google Scholar 

  100. Cao D, Wu J (2005) Modeling the selectivity of activated carbon for efficient separation of hydrogen and carbon dioxide. Carbon 43:1364–1370

    Article  Google Scholar 

  101. Sircar S, Golden TC, Rao MB (1996) Activated carbon for gas separation and storage. Carbon 1:1–12

    Article  Google Scholar 

  102. Herm ZR, Swisher JA, Smit B, Krishna R, Long JR (2011) Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133:5664–5667

    Article  Google Scholar 

  103. Lan J, Cao D, Wang W, Ben T, Zhu G (2010) High-capacity hydrogen storage in porous aromatic frameworks with diamond-like structure. J Phys Chem Lett 1:978–981

    Article  Google Scholar 

  104. Babarao R, Dai S, Jiang D (2011) Functionalizing porous-aromatic frameworks with polar organic groups for high-capacity and selective CO2 separation: a molecular simulation study. Langmuir 27:3451–3460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilun Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ben, T., Qiu, S. (2014). Carbon Dioxide Capture in Porous Aromatic Frameworks. In: Lu, AH., Dai, S. (eds) Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54646-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54646-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54645-7

  • Online ISBN: 978-3-642-54646-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics