Skip to main content

Unstructured Meshes in Large-Scale Ocean Modeling

  • Reference work entry
  • First Online:
Handbook of Geomathematics
  • 4128 Accesses

Abstract

The current status of large-scale ocean modeling on unstructured meshes is discussed in the context of climate applications. Our review is based on FEOM, which is at present the only general circulation model on a triangular mesh with a proven record of global applications. Different setups are considered including some promising alternative finite-element and finite-volume configurations. The focus is on consistency and performance issues which are much easier to achieve with finite-volume methods. On the other hand, they sometimes suffer from numerical modes and require more research before they can be generally recommended for modeling of the general circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blaise S (2009) Development of a finite element marine model. Thesis, École polytechnique de Louvain, Université Catolique de Louvain

    Google Scholar 

  • Blazek J (2001) Computational fluid dynamics: principles and applications. Elsevier, Amsterdam/New York

    MATH  Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations. Geophys Res Lett 30:1275

    Article  Google Scholar 

  • Casulli V, Walters RA (2000) An unstructured grid, three-dimensional model based on the shallow water equations. Int J Numer Methods Fluids 32:331–348

    Article  MATH  Google Scholar 

  • Chen C, Liu H, Beardsley RC (2003) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: applications to coastal ocean and estuaries. J Atmos Ocean Technol 20:159–186

    Article  Google Scholar 

  • Codina R, Soto O (1997) Finite element solution of the Stokes problem with dominating Coriolis force. Comput Methods Appl Mech Eng 142:215–234

    Article  MathSciNet  MATH  Google Scholar 

  • Codina R, Zienkiewicz OC (2002) CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as the stabilization parameter. Commun Numer Methods Eng 18:99–112

    Article  MATH  Google Scholar 

  • Comblen R, Legrand S, Deleersnijder E, Legat V (2009) A finite-element method for solving shallow water equations on the sphere. Ocean Model 28:12–23

    Article  Google Scholar 

  • Danilov S (2010) On utility of triangular C-grid type discretization for numerical modeling of large-scale ocean flows. Ocean Dyn 60(6):1361–1369. doi: 10.1007/s10236-010-0339-6

    Article  Google Scholar 

  • Danilov S, Kivman G, Schröter J (2004) A finite element ocean model: principles and evaluation. Ocean Model 6:125–150

    Article  Google Scholar 

  • Danilov S, Wang Q, Losch M, Sidorenko D, Schröter J (2008) Modeling ocean circulation on unstructured meshes: comparison of two horizontal discretizations. Ocean Dyn 58:365–374

    Article  Google Scholar 

  • Dawson CN, Westerink JJ, Feyen JC, Pothina D (2006) Continuous, discontinuous and coupled discontinuous-continuous Galerkin finite element methods for the shallow water equations. Int J Numer Methods Fluids 52:63–88

    Article  MathSciNet  MATH  Google Scholar 

  • Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, New York

    Book  Google Scholar 

  • Dupont F, Straub DN, Lin CA (2003) Influence of a step-like coastline on the basin scale vorticity budget in mid-latitude gyre models. Tellus 55A:255–272

    Article  Google Scholar 

  • Ford R, Pain CC, Piggott MD, Goddard AJH, de Oliveira CRE, Uplemby AP (2004) A non-hydrostatic finite-element model for three-dimensional stratified flows. Part I: model formulation. Mon Wea Rev 132:2832–2844

    Article  Google Scholar 

  • Fox-Kemper B, Menemenlis D (2008) Can large eddy simulation techniques improve mesoscale rich ocean models? In: Hecht MW, Hasumi H (eds) Ocean modeling in an eddying regime. Geophysical monograph, vol 177. AGU, Washington, DC, pp 319–337

    Chapter  Google Scholar 

  • Fringer OB, Gerritsen M, Street RL (2006) An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model 14:139–173

    Article  Google Scholar 

  • Haidvogel DB, Beckmann A (1999) Numerical ocean circulation modeling. Imperial College Press, London

    MATH  Google Scholar 

  • Hua BL, Thomasset F (1984) A noise-free finite-element scheme for the two-layer shallow-water equations. Tellus 36A:157–165

    Article  MathSciNet  Google Scholar 

  • Iskandarani M, Haidvogel DV, Levin JC (2003) A three-dimensional spectral element model for the solution of the hydrostatic primitive equations. J Comput Phys 186:397–425

    Article  MathSciNet  MATH  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Griffies SM (2004) Fundamentals of ocean climate models. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Griffies SM, Adcroft AJ (2008) Formulating the equations of ocean models. In: Hecht MW, and Hasumi H, (eds) Ocean modeling in an eddying regime. Geophysical monograph, vol 177. AGU, Washington, DC, pp 281–317

    Chapter  Google Scholar 

  • Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000) Developments in ocean climate modelling. Ocean Model 2:123–192

    Article  Google Scholar 

  • Hervouet J-M (2000) TELEMAC modelling system: an overview. Hydrol Process 14:2209–2210

    Article  Google Scholar 

  • Hervouet J-M (2007) Hydrodynamics of free surface flows: modelling with the finite element method. Wiley, New York

    Book  MATH  Google Scholar 

  • Jackett DR, McDougall TJ (1995) Minimal adjustment of hydrographic profiles to achieve static stability. J Atmos Ocean Technol 12:381–389

    Article  Google Scholar 

  • Jones JE, Davies AM (2008) Storm surge computations for the west coast of Britain using a finite element model (TELEMAC). Ocean Dyn 58:337–363

    Article  Google Scholar 

  • Kobayashi MH, Pereira JMC, Pereira JCF (1999) A conservative finite-volume second-order accurate projection method on hybrid unstructured grids. J Comput Phys 150:40–75

    Article  MathSciNet  MATH  Google Scholar 

  • Le Roux DY, Sène A, Rostand V, Hanert E (2005) On some spurious mode issues in shallow-water models using a linear algebra approach. Ocean Model 10:83–94

    Article  Google Scholar 

  • Le Roux DY, Rostand V, Pouliot B (2007) Analysis of numerically induced oscillations in 2D finite-element shallow water models. Part I: inertia-gravity waves. SIAM J Sci Comput 29:331–360

    Article  MathSciNet  MATH  Google Scholar 

  • Löhner R, Morgan K, Peraire J, Vahdati M (1987) Finite-element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int J Numer Methods Fluids 7:1093–1109

    Article  MATH  Google Scholar 

  • Lynch DR, Ip JTC, Naimie, CE, Werner FE (1996) Comprehensive coastal circulation model with application to the Gulf of Maine. Cont Shelf Res 16:875–906

    Article  Google Scholar 

  • Lynch DR, Holbroke MJ, Naimie CE (1997) The Maine coastal current: spring climatological circulation. Cont Shelf Res 17:605–634

    Article  Google Scholar 

  • Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3:1–20

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766

    Article  Google Scholar 

  • Pain CC, Piggott MD, Goddard AJH, Fang F, Gorman GJ, Marshall DP, Eaton MD, Power PW, de Oliveira CRE (2005) Three-dimensional unstructured mesh ocean modelling, Ocean Model 10:5–33

    Article  Google Scholar 

  • Piggott MD, Pain CC, Gorman GJ, Marshall DP, Killworth PD (2008) Unstructured adaptive meshes for ocean modeling. In: Hecht MW, Hasumi H (eds) Ocean modeling in an eddying regime. Geophysical monograph, vol 177. AGU, Washington, DC, pp 383–408

    Chapter  Google Scholar 

  • Raviart P, Thomas J (1977) A mixed finite element method for 2nd order elliptic problems. In: Galligani I, Magenes E (eds) Mathematical aspects of the finite element methods. Lecture notes in mathematics, vol 606. Springer, Berlin, pp 292–315

    Chapter  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404

    Article  Google Scholar 

  • Stuhne GR, Peltier WR (2006) A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry: a new numerical structure for ocean general circulation modeling. J Comput Phys 213:704–729

    Article  MathSciNet  MATH  Google Scholar 

  • Timmermann R, Danilov S, Schröter J, Böning C, Sidorenko D, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite-element global ice-ocean model. Ocean Model 27:114–129

    Article  Google Scholar 

  • Walters RA (2005) Coastal ocean models: two useful finite-element methods. Cont Shelf Res 25:775–793

    Article  Google Scholar 

  • Wang Q, Danilov S, Schröter J (2008) Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation. J Geophys Res 113:C05015. doi: 10.1029/2007JC004482

    Google Scholar 

  • Wang B, Fringer OB, Giddings SN, Fong DA (2009a) High-resolution simulations of a macrotidal estuary using SUNTANS. Ocean Model 28:167–192

    Article  Google Scholar 

  • Wang Q, Danilov S, Schröter J (2009b) Bottom water formation in the southern Weddell Sea and the influence of submarine ridges: idealized numerical simulations. Ocean Model 28:50–59

    Article  Google Scholar 

  • Wang Q, Danilov S, Hellmer H, Schröter J (2010) Overflow dynamics and bottom water formation in the western Ross Sea: The influence of tides J Geophys Res 115, C10054. doi: 10.1029/2010JC006189

    Article  Google Scholar 

  • Westerink JJ, Luettich RA, Blain CA, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts and estuaries; Report 2: Users Manual for ADCIRC-2DDI. Contractors Report to the US Army Corps of Engineers, Washington, DC

    Google Scholar 

  • White L, Deleersnijder E, Legat V (2008a) A three-dimensional unstructured mesh shallow-water model, with application to the flows around an island and in a wind driven, elongated basin. Ocean Model 22:26–47

    Article  Google Scholar 

  • White L, Legat V, Deleersnijder E (2008b) Tracer conservation for three-dimensional, finite element, free-surface, ocean modeling on moving prismatic meshes. Mon Weather Rev 136:420–442. doi: 10.1175/2007MWR2137.1

    Article  Google Scholar 

  • Yang Z, Khangaonkar T (2009) Modeling tidal circulation and stratification in Skagit River estuary using an unstructured grid ocean model. Ocean Model 28:34–49

    Article  Google Scholar 

  • Zhang Y, Baptista AM (2008) SELFE: a semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model 21:71–96

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000a) The finite element method, vol 1. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000b) The finite element method vol 3: fluid dynamics. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Danilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Danilov, S., Schröter, J. (2015). Unstructured Meshes in Large-Scale Ocean Modeling. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54551-1_13

Download citation

Publish with us

Policies and ethics