Skip to main content

Drug Addiction

  • Chapter
  • First Online:
MRI in Psychiatry

Abstract

In vivo imaging using magnetic resonance techniques helps to investigate one of the most common psychiatric diseases worldwide: substance dependence. Its individual development and maintenance is assumed to result from an interaction of various psychological, genetic, social, and substance-inherent psychotropic conditions that determine neuronal correlates of addicted behavior. Chronic substance abuse engages various neuroadaptive processes in different neurotransmitter systems, such as dopaminergic, glutamatergic, serotonergic, and opioidergic neurotransmission, which will be discussed in detail. Further, magnetic resonance imaging (MRI) methods, like functional magnetic resonance imaging (MRI), positron-emission tomography (PET), proton magnetic resonance spectroscopy (1H-MRS), and structural MRI, have enabled researchers to get crucial in vivo insight into major mechanisms of drug dependence, i.e., heightened drug-associated reward processing, abnormal functional connectivity predicting impairments in learning, decision-making, and the magnitude of drug craving. Likewise, decreased striatal dopamine synthesis capacity and downregulation of dopamine D2/3 receptor availability have been correlated with drug craving and treatment outcome. In this chapter, we focus on recent neuroimaging studies that contribute to the research of individuals depending on alcohol, heroin, cocaine, or other psychostimulants. Finally, MRI studies on the functional and structural basis of pathological gambling as a related behavioral addiction are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H-MRS:

Proton magnetic resonance spectroscopy

5-HT:

Serotonin

Cho:

Choline

Cr:

Creatine

DA:

Dopamine

DRD2 :

Dopamine D2 receptor

DSM-IV:

Diagnostic and Statistical Manual of Mental Disorders

DTI:

Diffusion tensor imaging

fMRI:

Functional magnetic resonance imaging

GABA:

Gamma-aminobutyric acid

MRI:

Magnetic resonance imaging

NAA:

N-acetyl-aspartate

NMDA:

N-methyl-D-aspartate

PET:

Positron-emission tomography

PFC:

Prefrontal cortex

SPECT:

Single photon emission computed tomography

References

  • Abi-Dargham A et al (1998) Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and [123I]iomazenil. Am J Psychiatry 155(11):1550–1555

    CAS  PubMed  Google Scholar 

  • Agartz I et al (1991) T1 and T2 relaxation time estimates and brain measures during withdrawal in alcoholic men. Drug Alcohol Depend 29(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Asensio S et al (2010) Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later. Synapse (New York, NY) 64(5):397–402

    Article  CAS  Google Scholar 

  • Bartsch A et al (2007) Manifestations of early brain recovery associated with abstinence from alcoholism. Brain 130(Pt 1):36–47

    PubMed  Google Scholar 

  • Beck A et al (2012) Relapse in alcohol dependence: the impact of brain structure, brain function and brain connectivity. Arch Gen Psychiatry 69:842–852

    Article  PubMed  Google Scholar 

  • Bendszus M et al (2001) Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. AJNR Am J Neuroradiol 22(10):1926–1932

    CAS  PubMed  Google Scholar 

  • Berridge K (2009) Wanting and liking: observations from the neuroscience and psychology laboratory. Inquiry (Oslo, Norway) 52(4):378

    Google Scholar 

  • Berridge K, Kringelbach M (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 199:457–480

    Article  CAS  Google Scholar 

  • Berridge K, Robinson T, Aldridge J (2009) Dissecting components of reward: “liking”, “wanting”, and learning. Curr Opin Pharmacol 9:65–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Besson J et al (1989) Magnetic resonance imaging in Alzheimer’s disease, multi-infarct dementia, alcoholic dementia and Korsakoff’s psychosis. Acta Psychiatr Scand 80(5):451–458

    Article  CAS  PubMed  Google Scholar 

  • Boileau I et al (2003) Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49:226–231

    Article  CAS  PubMed  Google Scholar 

  • Carlen P et al (1978) Reversible cerebral atrophy in recently abstinent chronic alcoholics measured by computed tomography scans. Science (New York, NY) 200(4345):1076–1078

    Article  CAS  Google Scholar 

  • Charlet K, Beck A, Heinz A (2013a) The dopamine system in mediating alcohol effects in humans. Curr Top Behav Neurosci 13:461–488

    Article  CAS  PubMed  Google Scholar 

  • Charlet K et al (2013b) Neural activation during processing of aversive faces predicts treatment outcome in alcoholism. Addict Biol. 2013 Mar 7. doi:10.1111/adb.12045.(Epub ahead of print)

  • Charlet K et al (2013c) Increased neural activity during high working memory load predicts low relapse risk in alcohol dependence. Addict Biol. 2013 Oct 22. doi:10.1111/adb.12103. (Epub ahead of print)

  • Crockford D et al (2005) Cue-induced brain activity in pathological gamblers. Biol Psychiatry 58(10): 787–795

    Article  PubMed  Google Scholar 

  • de Ruiter M et al (2009) Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34(4):1027–1038

    Article  PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  • Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7(1):69–76

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Sclafani V et al (1995) Brain atrophy and cognitive function in older abstinent alcoholic men. Alcohol Clin Exp Res 19(5):1121–1126

    Article  PubMed Central  PubMed  Google Scholar 

  • Dilling H, Mombour W, Schmidt M (2000) Internationale Klassifikation psychischer Störungen: ICD-10, Kapitel V (F) klinisch-diagnostische Leitlinien. Weltgesundheitsorganisation. Huber, Bern

    Google Scholar 

  • Durazzo T et al (2006) Brain metabolite concentrations and neurocognition during short-term recovery from alcohol dependence: preliminary evidence of the effects of concurrent chronic cigarette smoking. Alcohol Clin Exp Res 30(3):539–551

    Article  CAS  PubMed  Google Scholar 

  • Ende G et al (2005) Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biol Psychiatry 58(12):974–980

    Article  CAS  PubMed  Google Scholar 

  • Garavan H et al (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157(11):1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Gardner E (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81(2):263–284

    Article  CAS  PubMed  Google Scholar 

  • Goldstein R et al (2007) Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 164(1):43–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Grüsser S, Thalemann C (2006) Verhaltenssucht – Diagnostik, Therapie, Forschung. Huber, Bern

    Google Scholar 

  • Grüsser S et al (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 175(3):296–302

    Article  Google Scholar 

  • Harris G et al (1999) Hypoperfusion of cerebellum and aging effects on cerebral cortex blood flow in abstinent alcoholics: a SPECT study. Alcohol Clin Exp Res 23(7):1219–1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris G et al (2008) Frontal white matter and cingulum diffusion tensor imaging deficits in alcoholism. Alcohol Clin Exp Res 32(6):1001–1013

    Article  PubMed  Google Scholar 

  • Heinz A et al (1996) Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients. Arch Gen Psychiatry 53(12):1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Higley J et al (1998a) In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. Am J Psychiatry 155(8):1023–1028

    CAS  PubMed  Google Scholar 

  • Heinz A, Ragan P et al (1998b) Reduced serotonin transporters in alcoholism. Am J Psychiatry 155:1544–1549

    CAS  PubMed  Google Scholar 

  • Heinz A et al (2000) A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry 47(7):643–649

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Mann K, Weinberger D (2001) Serotonergic dysfunction, negative mood states, and response to alcohol. Alcohol Clin Exp Res 25:487–495

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Jones D et al (2003a) Serotonin transporter availability correlates with alcohol intake in non-human primates. Mol Psychiatry 8(2):231–234

    Article  CAS  PubMed  Google Scholar 

  • Heinz A, Löber S et al (2003b) Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake. Alcohol Alcohol 38(1):35–39

    Article  PubMed  Google Scholar 

  • Heinz A et al (2004) Correlation between dopamine D-2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161: 1783–1789

    Article  PubMed  Google Scholar 

  • Heinz A, Reimold M et al (2005a) Correlation of stable elevations in striatal mu-opioid receptor availability in detoxified alcoholic patients with alcohol craving. Arch Gen Psychiatry 62:57–64

    Article  PubMed  Google Scholar 

  • Heinz A, Siessmeier T et al (2005b) Correlation of alcohol craving with striatal dopamine synthesis capacity and D-2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 162:1515–1520

    Article  PubMed  Google Scholar 

  • Heinz A et al (2007) Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol Clin Exp Res 31(7):1138–1147

    Article  PubMed  Google Scholar 

  • Heinz A, Beck A, Grüsser S et al (2009a) Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict Biol 14(1):108–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinz A, Beck A, Wrase J et al (2009b) Neurotransmitter systems in alcohol dependence. Pharmacopsychiatry 42(Suppl 1):S95–S101

    Article  CAS  PubMed  Google Scholar 

  • Hermann D et al (2012) Translational magnetic resonance spectroscopy reveals excessive central glutamate levels during alcohol withdrawal in humans and rats. Biol Psychiatry 71:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Hinckers A et al (2006) Low level of response to alcohol as associated with serotonin transporter genotype and high alcohol intake in adolescents. Biol Psychiatry 60(3):282–287

    Article  CAS  PubMed  Google Scholar 

  • Hommer D et al (1996) Decreased corpus callosum size among alcoholic women. Arch Neurol 53(4): 359–363

    Article  CAS  PubMed  Google Scholar 

  • Hommer D et al (2001) Evidence for a gender-related effect of alcoholism on brain volumes. Am J Psychiatry 158(2):198–204

    Article  CAS  PubMed  Google Scholar 

  • Hurd Y et al (1990) The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudate-putamen. Neurosci Lett 109(1–2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jagannathan N, Desai N, Raghunathan P (1996) Brain metabolite changes in alcoholism: an in vivo proton magnetic resonance spectroscopy (MRS) study. Magn Reson Imaging 14(5):553–557

    Article  CAS  PubMed  Google Scholar 

  • Joutsa J et al (2011) Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res 194(3):340–346

    Article  PubMed  Google Scholar 

  • Koob GF (2003) Alcoholism: allostasis and beyond. Alcohol Clin Exp Res 27(2):232–243

    Article  CAS  PubMed  Google Scholar 

  • Koob GF (2008) Hedonic homeostatic dysregulation as a driver of drug-seeking behavior. Drug Discov Today Dis Model 5(4):207–215

    Article  Google Scholar 

  • Kosten T, George T (2002) The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect 1(1):13–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Kreek M (2008) Neurobiology of opiates and opioids. In: Galanter M, Kleber HD (eds) Textbook of substance abuse treatment, 4th edn. American Psychiatric Publishing, Washington, pp 247–264

    Google Scholar 

  • Kril J et al (1997) The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79(4):983–998

    Article  CAS  PubMed  Google Scholar 

  • Krystal J et al (2006) Gamma-aminobutyric acid type A receptors and alcoholism: intoxication, dependence, vulnerability, and treatment. Arch Gen Psychiatry 63(9):957–968

    Article  CAS  PubMed  Google Scholar 

  • Laakso M et al (2000) A volumetric MRI study of the hippocampus in type 1 and 2 alcoholism. Behav Brain Res 109(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Lane S et al (2010) Diffusion tensor imaging and decision making in cocaine dependence. PLoS ONE 5(7): e11591

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee E et al (2007) Alteration of brain metabolites in young alcoholics without structural changes. Neuroreport 18(14):1511–1514

    Article  CAS  PubMed  Google Scholar 

  • Licata S, Renshaw P (2010) Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci 1187:148–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lou M et al (2012) Cue-elicited craving in heroin addicts at different abstinent time: an fMRI pilot study. Subst Use Misuse 47:631–639

    Article  PubMed Central  PubMed  Google Scholar 

  • Lubman D et al (2009) Responsiveness to drug cues and natural rewards in opiate addiction: associations with later heroin use. Arch Gen Psychiatry 66(2):205–212

    Article  PubMed  Google Scholar 

  • Mann K et al (1992) Do women develop alcoholic brain damage more readily than men? Alcohol Clin Exp Res 16(6):1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Mann K et al (1993) The reversibility of alcoholic brain damage is not due to rehydration: a CT study. Addiction (Abingdon, England) 88(5):649–653

    Article  CAS  Google Scholar 

  • Mann K et al (2005) Neuroimaging of gender differences in alcohol dependence: are women more vulnerable? Alcohol Clin Exp Res 29(5):896–901

    Article  CAS  PubMed  Google Scholar 

  • Martin P et al (1995) Brain proton magnetic resonance spectroscopy studies in recently abstinent alcoholics. Alcohol Clin Exp Res 19(4):1078–1082

    Article  CAS  PubMed  Google Scholar 

  • Moselhy H, Georgiou G, Kahn A (2001) Frontal lobe changes in alcoholism: a review of the literature. Alcohol Alcohol 36(5):357–368

    Article  CAS  PubMed  Google Scholar 

  • Myrick H et al (2008) Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch Gen Psychiatry 65(4):466–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oscar-Berman M, Marinkovic K (2003) Alcoholism and the brain: an overview. Alcohol Res Health 27(2): 125–133

    PubMed  Google Scholar 

  • Oscar-Berman M, Marinkovic K (2007) Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev 17:239–257

    Article  PubMed Central  PubMed  Google Scholar 

  • Park SQ et al (2010) Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci 30(22):7749–7753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulus M, Tapert S, Schuckit M (2005) Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 62(7):761–768

    Article  PubMed  Google Scholar 

  • Pfefferbaum A et al (1996) Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study. Alcohol Clin Exp Res 20(4):752–757

    Article  CAS  PubMed  Google Scholar 

  • Pfefferbaum A et al (1997) Frontal lobe volume loss observed with magnetic resonance imaging in older chronic alcoholics. Alcohol Clin Exp Res 21(3): 521–529

    Article  CAS  PubMed  Google Scholar 

  • Pfefferbaum A, Adalsteinsson E, Sullivan E (2006) Dysmorphology and microstructural degradation of the corpus callosum: interaction of age and alcoholism. Neurobiol Aging 27(7):994–1009

    Article  CAS  PubMed  Google Scholar 

  • Potenza M (2006) Should addictive disorders include non-substance-related conditions? Addiction (Abingdon, England) 101(Suppl):142–151

    Article  Google Scholar 

  • Potenza M (2008) Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc B-Biol Sci 363(1507):3181–3189

    Article  Google Scholar 

  • Reuter J et al (2005) Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 8(2):147–148

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, Berridge K (1993) The neural basis of drug craving - an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291

    Article  CAS  PubMed  Google Scholar 

  • Ross B, Michaelis T (1994) Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 10(4):191–247

    CAS  PubMed  Google Scholar 

  • Saß H et al (2003) Diagnostisches und Statistisches Manual Psychischer Störungen DSM-IV-TR. Hogrefe, Göttingen

    Google Scholar 

  • Schroth G et al (1988) Reversible brain shrinkage in abstinent alcoholics, measured by MRI. Neuroradiology 30(5):385–389

    Article  CAS  PubMed  Google Scholar 

  • Schuckit M, Smith T (1996) An 8-year follow-up of 450 sons of alcoholic and control subjects. Arch Gen Psychiatry 53(3):202–210

    Article  CAS  PubMed  Google Scholar 

  • Schuckit M et al (1998) The clinical course of alcohol-related problems in alcohol dependent and nonalcohol dependent drinking women and men. J Stud Alcohol 59(5):581–590

    CAS  PubMed  Google Scholar 

  • Schuckit M et al (1999) Selective genotyping for the role of 5-HT2A, 5-HT2C, and GABA alpha 6 receptors and the serotonin transporter in the level of response to alcohol: a pilot study. Biol Psychiatry 45(5):647–651

    Article  CAS  PubMed  Google Scholar 

  • Schulte T et al (2005) Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cereb Cortex 15(9):1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague P (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Seitz D et al (1999) Localized proton magnetic resonance spectroscopy of the cerebellum in detoxifying alcoholics. Alcohol Clin Exp Res 23(1):158–163

    Article  CAS  PubMed  Google Scholar 

  • Siegel S (1983) No title. In classical conditioning, drug tolerance and drug dependence. In: Israel I, Glaser FB et al (eds) Research advances in alcohol and drug problems. Plenum Press, New York, pp 207–246

    Chapter  Google Scholar 

  • Smith M et al (1988) Brain hydration during alcohol withdrawal in alcoholics measured by magnetic resonance imaging. Drug Alcohol Depend 21(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • Sullivan E (2000) Neuropsychological vulnerability to alcoholism: evidence from neuroimaging studies. In: Noronha A, Eckardt M, Warren K (eds) Review of NIAAA’s neuroscience and behavioral research. NIAAA, Bethesda, pp 473–508, Monograph No. 34

    Google Scholar 

  • Sullivan E et al (1995) Anterior hippocampal volume deficits in nonamnesic, aging chronic alcoholics. Alcohol Clin Exp Res 19(1):110–122

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Gastfriend D, Coyle J (1995) The glutamatergic basis of human alcoholism. Am J Psychiatry 152:332–340

    CAS  PubMed  Google Scholar 

  • Umhau J et al (2010) Effect of acamprosate on magnetic resonance spectroscopy measures of central glutamate in detoxified alcohol-dependent individuals: a randomized controlled experimental medicine study. Arch Gen Psychiatry 67(10):1069–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Holst R et al (2012) A voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy controls. Drug Alcohol Depend 124:142–148

    Article  PubMed  Google Scholar 

  • Vion-Dury J et al (1994) What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? J Neurol 241(6):354–371

    Article  CAS  PubMed  Google Scholar 

  • Volkow N et al (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14(2):169–177

    Article  CAS  PubMed  Google Scholar 

  • Volkow N et al (1996) Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 20:1594–1598

    Article  CAS  PubMed  Google Scholar 

  • Volpicelli J et al (1995) Effect of naltrexone on alcohol “high” in alcoholics. Am J Psychiatry 152(4): 613–615

    CAS  PubMed  Google Scholar 

  • Wrase J et al (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 35(2):787–794

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Charlet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Charlet, K., Beck, A., Heinz, A. (2014). Drug Addiction. In: Mulert, C., Shenton, M. (eds) MRI in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54542-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54542-9_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54541-2

  • Online ISBN: 978-3-642-54542-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics