Skip to main content

Proliferative Diabetic Retinopathy

  • Chapter
  • First Online:
Clinical Strategies in the Management of Diabetic Retinopathy

Abstract

Proliferative diabetic retinopathy (PDR) is characterized by a fibrovascular proliferation that arises from the disk or from the superficial retinal vasculature, as a response to chronic retinal hypoxia. Panretinal photocoagulation (PRP) is the recommended treatment and a reduction of 50 % of severe visual loss has been described in the high-risk PDR group. Nevertheless, visual field loss, ingravescence of diabetic macular edema, and visual impairment have been reported as possible side effects. The injection of vascular endothelium factor (VEGF) inhibitor has shown some favorable effects in the regression of neovascularization, even if the benefits are limited and a high rate of recurrence has been shown in the short term. Thus, the combination therapy of anti-VEGF injection and PRP has been considered a valuable treatment option to improve the results in some selected cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein R, Klein BEK, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526

    Article  PubMed  CAS  Google Scholar 

  2. Klein R, Klein BEK, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 102:527–532

    Article  PubMed  CAS  Google Scholar 

  3. Dobree JH (1964) Proliferative diabetic retinopathy: evolution of the retinal lesions. Br J Ophthalmol 48:637–649

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Garner A (1993) Histopathology of diabetic retinopathy in man. Eye (Lond) 7:250–253

    Article  Google Scholar 

  5. Michelson I (1948) The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 68:137–180

    Google Scholar 

  6. Shimizu K, Kobayashi Y, Muraoka K (1981) Midperipheral fundus involvement in diabetic retinopathy. Ophthalmology 88:601–612

    Article  PubMed  CAS  Google Scholar 

  7. Wise G (1956) Retinal neovascularization. Trans Am Ophthalmol Soc 54:729–826

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Patz A (1982) Clinical and experimental studies on retinal neovascularization. Am J Ophthalmol 94:715–743

    Article  PubMed  CAS  Google Scholar 

  9. Cho H, Alwassia AA, Regiatieri CV et al (2013) Retinal neovascularization secondary to proliferative diabetic retinopathy characterized by spectral domain optical coherence tomography. Retina 33:542–547

    Article  PubMed  Google Scholar 

  10. Jansson RW, Frøystein T, Krohn J (2012) Topographical distribution of retinal and optic disc neovascularization in early stages of proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 53:8246–8252

    Article  PubMed  Google Scholar 

  11. Davis M (1965) Vitreous contraction in proliferative diabetic retinopathy. Arch Ophthalmol 74:741–751

    Article  PubMed  CAS  Google Scholar 

  12. Kampik A, Kenyon K, Michels R et al (1981) Epiretinal and vitreous membranes: comparative study of 56 cases. Arch Ophthalmol 99:1445–1454

    Article  PubMed  CAS  Google Scholar 

  13. Nork T, Wallow I, Sramek S, Anderson G (1987) Mueller’s cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol 105:1424–1429

    Article  PubMed  CAS  Google Scholar 

  14. Wallow IHL, Geldner PS (1980) Endothelial fenestrae in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 19:1176–1183

    PubMed  CAS  Google Scholar 

  15. Taniguchi Y (1976) Ultrastructure of newly formed blood vessels in diabetic retinopathy. Jpn J Ophthalmol 20:19–31

    Google Scholar 

  16. Diabetic Retinopathy Study Research Group (1981) A modification of the Airlie House classification of diabetic retinopathy. Report 7. Invest Ophthalmol Vis Sci 21:210–226

    Google Scholar 

  17. Wilkinson CP, Ferris FL III, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110:1677–1682

    Article  PubMed  CAS  Google Scholar 

  18. Bandello F, Gass JD, Lattanzio R, Brancato R (1996) Spontaneous regression of neovascularization at the disk and elsewhere in diabetic retinopathy. Am J Ophthalmol 122:494–501

    PubMed  CAS  Google Scholar 

  19. Ohira A, de Juan EJ (1990) Characterization of glial involvement in proliferative diabetic retinopathy. Ophthalmologica 201:187–195

    Article  PubMed  CAS  Google Scholar 

  20. Di Bernardo CW, Schachat AP, Fekrat S (1998) Ophthalmic ultrasound: a diagnostic atlas. Thieme, New York

    Google Scholar 

  21. Schwartz SD, Alexander R, Hiscott P et al (1996) Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark in vitrectomy for diabetic traction retinal detachment. Ophthalmology 103:323–328

    Article  Google Scholar 

  22. Chu TG, Lopez PF, Cano MR et al (1996) Posterior vitreoschisis. An echographic finding in proliferative diabetic retinopathy. Ophthalmology 103:315–322

    Article  PubMed  CAS  Google Scholar 

  23. Restori M, Mc Leod D (1997) Ultrasound in previtrectomy assessment. Trans Ophthalmol Soc UK 97:232–234

    Google Scholar 

  24. Arzabe CW, Akiba J, Jalkh AE et al (1991) Comparative study of vitreoretinal relationships using biomicroscopy and ultrasound. Graefes Arch Clin Exp Ophthalmol 229:66–68

    Article  PubMed  CAS  Google Scholar 

  25. Kaiser PK, Riemann CD, Sears JE et al (2001) Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction. Am J Ophthalmol 131:44–49

    Article  PubMed  CAS  Google Scholar 

  26. Villegas VC, Flynn HW Jr (2004) Diabetic retinopathy. In: Schuman JS, Puliafito CA, Fujimoto JG (eds) Optical coherence tomography of ocular disease, 2nd edn. Slack Incorporated, Thorofare, pp 158–214

    Google Scholar 

  27. Soman M, Ganekal S, Nair U, Nair K (2012) Effect of panretinal photocoagulation on macular morphology and thickness in eyes with proliferative diabetic retinopathy without clinically significant macular edema. Clin Ophthalmol 6:2013–2017

    PubMed Central  PubMed  Google Scholar 

  28. Shah VA, Brown JS, Mahmoud TH (2012) Correlation of outer retinal microstructure and foveal thickness with visual acuity after pars plana vitrectomy for complications of proliferative diabetic retinopathy. Retina 32:1775–1780

    Article  PubMed  Google Scholar 

  29. Lee SB, Kwag JY, Lee HJ et al (2013) The longitudinal changes of retinal nerve fiber layer thickness after panretinal photocoagulation in diabetic retinopathy patients. Retina 33:188–193

    Article  PubMed  CAS  Google Scholar 

  30. Esmaeelpour M, Brunner S, Ansari-Shahrezaei S (2012) Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest Ophthalmol Vis Sci 53:6803–6809

    Article  PubMed  Google Scholar 

  31. Vujosevic S, Martini F, Cavarzeran F et al (2012) Macular and peripapillary choroidal thickness in diabetic patients. Retina 32:1781–1790

    PubMed  Google Scholar 

  32. Diabetic Retinopathy Study Research Group (1981) Photocoagulation treatment of proliferative diabetic retinopathy: relationship of adverse treatment effects to retinopathy severity. DRS Report Number 5. Dev Ophthalmol 2:248–261

    Google Scholar 

  33. Nagpal M, Marlecha S, Nagpal K (2010) Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multispot pattern scan laser. Retina 30:452–458

    Article  PubMed  Google Scholar 

  34. Lövestam-Adrian M, Andréasson S, Ponjavic V (2004) Macular function assessed with mfERG before and after panretinal photocoagulation in patients with proliferative diabetic retinopathy. Doc Ophthalmol 109:115–121

    Article  PubMed  Google Scholar 

  35. Messias A, Ramos Filho JA, Messias K (2012) Electroretinographic findings associated with panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab treatment for high-risk proliferative diabetic retinopathy. Doc Ophthalmol 124:225–236

    Article  PubMed  Google Scholar 

  36. Unoki N, Nishijima K, Sakamoto A et al (2007) Retinal sensitivity loss and structural disturbance in areas of capillary nonperfusion of eyes with diabetic retinopathy. Am J Ophthalmol 144:755–760

    Article  PubMed  Google Scholar 

  37. Muqit MM, Gray JC, Marcellino GR (2010) In vivo laser-tissue interactions and healing responses from 20- vs 100-millisecond pulse Pascal photocoagulation burns. Arch Ophthalmol 128:448–455

    Article  PubMed  Google Scholar 

  38. Mendrinos E, Mangioris G, Papadopoulou DN et al (2010) Retinal vessel analyzer measurements of the effect of panretinal photocoagulation on the retinal arteriolar diameter in diabetic retinopathy. Retina 30:555–561

    Article  PubMed  Google Scholar 

  39. The Diabetic Retinopathy Study Research Group (1978) Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology 85:82–106

    Article  Google Scholar 

  40. The Diabetic Retinopathy Study Research Group (1981) Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 88:583–600

    Article  Google Scholar 

  41. Early Treatment Diabetic Retinopathy Study Research Group (1991) Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 98:741–756

    Article  Google Scholar 

  42. Diabetic Retinopathy Study Research Group (1981) Design, methods, and baseline results. DRS Report Number 6. Invest Ophthalmol 21:149–209

    Google Scholar 

  43. Diabetic Retinopathy Study Research Group (1976) Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol 81:383–396

    Google Scholar 

  44. Diabetic Retinopathy Study Research Group (1979) Four risk factors for severe visual loss in diabetic retinopathy: the third report from the Diabetic Retinopathy Study. Arch Ophthalmol 97:654–655

    Article  Google Scholar 

  45. Early Treatment Diabetic Retinopathy Study Research Group (1991) Effects of aspirin treatment on diabetic retinopathy. ETDRS Report Number 8. Ophthalmology 98:757–765

    Article  Google Scholar 

  46. Early Treatment Diabetic Retinopathy Study Research Group (1991) Early photocoagulation for diabetic retinopathy ETDRS Report Number 9. Ophthalmology 98:766–785

    Article  Google Scholar 

  47. Ferris F (1996) Early photocoagulation in patients with either type I or type II diabetes. Trans Am Ophthalmol Soc 94:505–537

    PubMed Central  PubMed  CAS  Google Scholar 

  48. American Academy of Ophthalmology Retina Panel (2008) Preferred Practice Pattern® Guidelines. Diabetic retinopathy. American Academy of Ophthalmology, San Francisco (4th printing 2012). Available at: www.aao.org/ppp

  49. Glaser B (1988) Extracellular modulatory factors and the control of intraocular neovascularization: an overview. Ophthalmology 106:603–607

    CAS  Google Scholar 

  50. Glaser B (1985) Retinal pigment epithelial cells release an inhibitor of neovascularization. Arch Ophthalmol 103:1870–1875

    Article  PubMed  CAS  Google Scholar 

  51. Patz A (1984) Retinal neovascularization: early contributions of Professor Michaelson and recent observations. Br J Ophthalmol 68:42–46

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Landers M, Stefanson E, Wolbarsht ML (1982) Panretinal photocoagulation and retinal oxygenation. Retina 2:167–175

    Article  PubMed  Google Scholar 

  53. Early Treatment Diabetic Retinopathy Study (Research) Group (1987) Techniques for scatter and local photocoagulation: Early Treatment Diabetic Retinopathy Study report no. 3. Int Ophthalmol Clin 27:254–264

    Article  Google Scholar 

  54. Ferris F III, Podgor MJ, Davis MD (1987) The Diabetic Retinopathy Study Research Group. Macular edema in Diabetic Retinopathy Study patients: diabetic Retinopathy Study report number 12. Ophthalmology 95:754–760

    Article  Google Scholar 

  55. Doft B, Blankenship GW (1982) Single versus multiple treatment sessions of argon laser panretinal photocoagulation for proliferative diabetic retinopathy. Ophthalmology 89:772–779

    Article  PubMed  CAS  Google Scholar 

  56. Bandello F, Polito A, Pognuz DR et al (2006) Triamcinolone as adjunctive treatment to laser panretinal photocoagulation for proliferative diabetic retinopathy. Arch Ophthalmol 124:643–650

    Article  PubMed  CAS  Google Scholar 

  57. Blumenkranz MS, Yellachich D, Andersen DE et al (2006) Semiautomated patterned scanning laser for retinal photocoagulation. Retina 26:370–376

    Article  PubMed  Google Scholar 

  58. Schuele G, Rumohr M, Huettmann G, Brinkmann R (2005) RPE damage thresholds and mechanisms for laser exposure in the microsecond-to-millisecond time regimen. Invest Ophthalmol Vis Sci 46:714–719

    Article  PubMed  Google Scholar 

  59. Sheth S, Lanzetta P, Veritti D et al (2011) Experience with the Pascal® photocoagulator: an analysis of over 1,200 laser procedures with regard to parameter refinement. Indian J Ophthalmol 59:87–91

    Article  PubMed Central  PubMed  Google Scholar 

  60. Chappelow AV, Tan K, Waheed NK, Kaiser PK (2012) Panretinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser. Am J Ophthalmol 153:137–142

    Article  PubMed  Google Scholar 

  61. Muqit MM, Marcellino GR, Henson DB et al (2010) Single-session vs multiple-session pattern scanning laser panretinal photocoagulation in proliferative diabetic retinopathy. The Manchester Pascal Study. Arch Ophthalmol 128:525–533

    Article  PubMed  Google Scholar 

  62. Muraly P, Limbad P, Srinivasan K et al (2011) Single session of Pascal versus multiple sessions of conventional laser for panretinal photocoagulation in proliferative diabetic retinopathy. A comparative study. Retina 31:1359–1365

    Article  PubMed  Google Scholar 

  63. Kernt M, Cheuteu R, Vounotrypidis E et al (2011) Focal and panretinal photocoagulation with a navigated laser (NAVILAS®). Acta Ophthalmol 89:662–664

    Article  Google Scholar 

  64. Bandello F, Pognuz DR, Pirracchio A, Polito A et al (2004) Intravitreal triamcinolone acetonide for florid proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 242:1024–1027

    Article  PubMed  CAS  Google Scholar 

  65. Jonas JB, Kreissig I, Degenring R (2005) Intravitreal triamcinolone acetonide for treatment of intraocular proliferative, exudative, and neovascular diseases. Prog Retin Eye Res 24:587–611

    Article  PubMed  CAS  Google Scholar 

  66. Fischer S, Renz D, Schaper W, Karliczek GF (2001) In vitro effects of dexamethasone on hypoxia-induced permeability and expression of vascular endothelial growth factor. Eur J Pharmacol 411:231–243

    Article  PubMed  CAS  Google Scholar 

  67. Nonaka A, Kiryu J, Tsujikawa A et al (2002) Inflammatory response after scatter laser photocoagulation in nonphotocoagulated retina. Invest Ophthalmol Vis Sci 43:1204–1209

    PubMed  Google Scholar 

  68. Wilson CA, Berkowitz BA, Sato Y et al (1992) Treatment with intravitreal steroid reduces blood-retinal barrier breakdown due to retinal photocoagulation. Arch Ophthalmol 110:1155–1159

    Article  PubMed  CAS  Google Scholar 

  69. Mirshahi A, Shenazandi H, Lashay A et al (2010) Intravitreal triamcinolone as an adjunct to standard laser therapy in coexisting high-risk proliferative diabetic retinopathy and clinically significant macular edema. Retina 30:254–259

    Article  PubMed  Google Scholar 

  70. Diabetic Retinopathy Clinical Research Network (2011) Randomized trial evaluating short-term effects of intravitreal ranibizumab or triamcinolone acetonide on macular edema after focal/grid laser for diabetic macular edema in eyes also receiving panretinal photocoagulation. Retina 31:1009–1027

    Article  PubMed Central  Google Scholar 

  71. Adamis AP, Miller JW, Bernal MT et al (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 118:445–450

    PubMed  CAS  Google Scholar 

  72. Adamis AP, Shima DT, Tolentino MJ et al (1996) Inhibition of vascular endothelial growth factor prevents retinal ischemia associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 114:66–71

    Article  PubMed  CAS  Google Scholar 

  73. Adamis AP, Altaweel M, Bressler NM et al (2006) Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 113:23–28

    Article  PubMed  Google Scholar 

  74. Avery RL (2006) Regression of retinal and iris neovascularization after intravitreal bevacizumab (Avastin) treatment. Retina 26:352–354

    Article  PubMed  Google Scholar 

  75. Jorge R, Costa RA, Calucci D et al (2006) Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study). Retina 26:1006–1013

    Article  PubMed  Google Scholar 

  76. Filho JA, Messias A, Almeida FP et al (2011) Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy. Acta Ophthalmol 89:567–572

    Article  Google Scholar 

  77. Jeon S, Lee WK (2012) Intravitreal bevacizumab increases intraocular interleukin-6 levels at 1 day after injection in patients with proliferative diabetic retinopathy. Cytokine 60:535–539

    Article  PubMed  CAS  Google Scholar 

  78. Ernst BJ, García-Aguirre G, Oliver SC et al (2012) Intravitreal bevacizumab versus panretinal photocoagulation for treatment-naïve proliferative and severe nonproliferative diabetic retinopathy. Acta Ophthalmol 90:573–574

    Article  Google Scholar 

  79. Arevalo JF, Maia M, Flynn HW Jr et al (2008) Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br J Ophthalmol 92:213e16

    Article  Google Scholar 

  80. El-Sabagh HA, Abdelghaffar W, Labib AM et al (2011) Preoperative intravitreal bevacizumab use as an adjuvant to diabetic vitrectomy: histopathologic findings and clinical implications. Ophthalmology 118:636e41

    Article  Google Scholar 

  81. Mirshahi A, Roohipoor R, Lashay A et al (2008) Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: a randomized double-masked clinical trial. Eur J Ophthalmol 18:263–269

    PubMed  CAS  Google Scholar 

  82. Cintra LP, Costa RA, Ribeiro JA et al (2013) Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (Ibepe Study): 1-year results. Retina 33:1109–1116

    Article  PubMed  CAS  Google Scholar 

  83. Huang YH, Yeh PT, Chen MS et al (2009) Intravitreal bevacizumab and panretinal photocoagulation for proliferative diabetic retinopathy associated with vitreous hemorrhage. Retina 29:1134–1140

    Article  PubMed  Google Scholar 

  84. Yang CS, Hung KC, Huang YM, Hsu WM (2013) Intravitreal bevacizumab (Avastin) and panretinal photocoagulation in the treatment of high-risk proliferative diabetic retinopathy. J Ocul Pharmacol Ther 29:550–555

    Article  PubMed  CAS  Google Scholar 

  85. Nakao S, Ishikawa K, Yoshida S et al (2013) Altered vascular microenvironment by bevacizumab in diabetic fibrovascular membrane. Retina 33:957–963

    Article  PubMed  CAS  Google Scholar 

  86. Adamis AP, Altaweel M, Bressler NM et al; Macugen Diabetic Retinopathy Study Group (2006) Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 113:23–28

    Google Scholar 

  87. Cunningham ET Jr, Adamis AP, Altaweel M et al; Macugen Diabetic Retinopathy Study Group (2005) A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112:1747–1757

    Google Scholar 

  88. González VH, Giuliari GP et al (2009) Intravitreal injection of pegaptanib sodium for proliferative diabetic retinopathy. Br J Ophthalmol 93:1474–1478

    Article  PubMed  Google Scholar 

  89. Hornan D, Edmeades N, Krishnan R et al (2010) Use of pegaptanib for recurrent and non-clearing vitreous haemorrhage in proliferative diabetic retinopathy. Eye (Lond) 24:1315–1319

    Article  CAS  Google Scholar 

  90. Adamis AP, Berman AJ (2008) Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 30:65–84

    Article  PubMed  CAS  Google Scholar 

  91. Esser P, Bresgen M, Fischbach R et al (1995) Intercellular adhesion molecule-1 levels in plasma and vitreous from patients with vitreoretinal disorders. Ger J Ophthalmol 4(269–274):1995

    Google Scholar 

  92. Adamiec-Mroczek J, Oficjalska-Młyńczak J (2008) Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes–role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 246:1665–1670

    Article  PubMed  CAS  Google Scholar 

  93. Intravitreal bevacizumab for proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01724385] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

  94. Prospective, randomized, multicenter, open label, phase II study to access efficacy and safety of Lucentis® monotherapy compared with Lucentis® plus panretinal photocoagulation (PRP) and PRP in the treatment of patients with high risk proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01280929] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

  95. Multicenter 12 months clinical study to evaluate efficacy and safety of ranibizumab alone or in combination with laser photocoagulation vs. laser photocoagulation alone in proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01594281] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

  96. Prospective, randomized, open label, phase II study to assess efficacy and safety of Macugen® (pegaptanib 0.3 mg intravitreal injections) plus panretinal photocoagulation (PRP) and PRP (monotherapy) in the treatment of patients with high risk proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01281098] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

  97. Prompt panretinal photocoagulation versus ranibizumab + deferred panretinal photocoagulation for proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01489189 US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

  98. Aflibercept injection for proliferative diabetic retinopathy [ClinicalTrials.gov Identifier: NCT01805297] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

  99. Treatment with intravitreal aflibercept injection for proliferative diabetic retinopathy, The A.C.T study (ACT) [ClinicalTrials.gov Identifier: NCT01813773] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

  100. Joussen AM, Poulaki V, Mitsiades N et al (2002) Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J 16:438–440

    PubMed  CAS  Google Scholar 

  101. Hirano Y, Sakurai E, Matsubara A, Ogura Y (2010) Suppression of ICAM-1 in retinal and choroidal endothelial cells by plasmid small-interfering RNAs in vivo. Invest Ophthalmol Vis Sci 51:508–515

    Article  PubMed  Google Scholar 

  102. Arita R, Hata Y, Nakao S et al (2009) Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 58:215–226

    Google Scholar 

  103. Elner SG, Elner VM, Bian ZM et al (1997) Human retinal pigment epithelial cell interleukin-8 and monocyte chemotactic protein-1 modulation by T-lymphocyte products. Invest Ophthalmol Vis Sci 38:446–455

    PubMed  CAS  Google Scholar 

  104. Limb GA, Hollifield RD, Webster L et al (2001) Soluble TNF receptors in vitreoretinal proliferative disease. Invest Ophthalmol Vis Sci 42:1586–1591

    PubMed  CAS  Google Scholar 

  105. Tashimo A, Mitamura Y, Nagai S et al (2004) Aqueous levels of macrophage migration inhibitory factor and monocyte chemotactic protein-1 in patients with diabetic retinopathy. Diabet Med 21:1292–1297

    Article  PubMed  CAS  Google Scholar 

  106. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    Article  PubMed  CAS  Google Scholar 

  107. Liu XQ, Wu BJ, Pan WH et al (2012) Resveratrol mitigates rat retinal ischemic injury: the roles of matrix metalloproteinase-9, inducible nitric oxide, and heme oxygenase-1. J Ocul Pharmacol Ther 29:33–40

    Article  PubMed  Google Scholar 

  108. Haurigot V, Villacampa P, Ribera A et al (2012) Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One 7:e41511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. A pilot study on the effects of ILARIS® on patients with proliferative diabetic retinopathy (PDRP) [ClinicalTrials.gov Identifier: NCT01589029] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov. Accessed 4 Apr 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bandello MD, FEBO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandello, F., Lattanzio, R., Zucchiatti, I., Maestranzi, G. (2014). Proliferative Diabetic Retinopathy. In: Bandello, F., Zarbin, M., Lattanzio, R., Zucchiatti, I. (eds) Clinical Strategies in the Management of Diabetic Retinopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54503-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54503-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54502-3

  • Online ISBN: 978-3-642-54503-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics