Skip to main content

Model Selection for the ℓ2-SVM by Following the Regularization Path

  • Chapter
Transactions on Computational Intelligence XIII

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 8342))

  • 1581 Accesses

Abstract

For a support vector machine, model selection consists in selecting the kernel function, the values of its parameters, and the amount of regularization. To set the value of the regularization parameter, one can minimize an appropriate objective function over the regularization path. A priori, this requires the availability of two elements: the objective function and an algorithm computing the regularization path at a reduced cost. The literature provides us with several upper bounds and estimates for the leave-one-out cross-validation error of the ℓ2-SVM. However, no algorithm was available so far for fitting the entire regularization path of this machine. In this article, we introduce the first algorithm of this kind. It is involved in the specification of new methods to tune the corresponding penalization coefficient, whose objective function is a leave-one-out error bound or estimate. From a computational point of view, these methods appear especially appropriate when the Gram matrix is of low rank. A comparative study involving state-of-the-art alternatives provides us with an empirical confirmation of this advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allgower, E.L., Georg, K.: Continuation and path following. Acta Numerica 2, 1–64 (1993)

    Article  MathSciNet  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3), 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Boston (2004)

    Book  MATH  Google Scholar 

  4. Blanchard, G., Massart, P., Vert, R., Zwald, L.: Kernel projection machine: a new tool for pattern recognition. In: NIPS, vol. 17, pp. 1649–1656 (2005)

    Google Scholar 

  5. Burman, P.: A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods. Biometrika 76(3), 503–514 (1989)

    MATH  MathSciNet  Google Scholar 

  6. Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research 8, 841–861 (2007)

    MATH  Google Scholar 

  7. Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M., Lin, C.-J.: Training and testing low-degree polynomial data mappings via linear SVM. Journal of Machine Learning Research 11, 1471–1490 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Chapelle, O.: Training a support vector machine in the primal. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines, ch. 2, pp. 29–50. The MIT Press, Cambridge (2007)

    Google Scholar 

  9. Chapelle, O., Vapnik, V.N., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning 46(1), 131–159 (2002)

    Article  MATH  Google Scholar 

  10. Chung, K.-M., Kao, W.-C., Sun, C.-L., Wang, L.-L., Lin, C.-J.: Radius margin bounds for support vector machines with the RBF kernel. Neural Computation 15(11), 2643–2681 (2003)

    Article  MATH  Google Scholar 

  11. Cortes, C., Mohri, M., Talwalkar, A.: On the impact of kernel approximation on learning accuracy. In: AISTATS 2010, pp. 113–120 (2010)

    Google Scholar 

  12. Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  13. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  14. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51, 41–59 (2003)

    Article  Google Scholar 

  15. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research 2, 243–264 (2001)

    Google Scholar 

  16. Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons, Chichester (1987)

    MATH  Google Scholar 

  17. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  18. Girolami, M.: Orthogonal series density estimation and the kernel eigenvalue problem. Neural Computation 14(13), 669–688 (2002)

    Article  MATH  Google Scholar 

  19. Gold, C., Sollich, P.: Model selection for support vector machine classification. Neurocomputing 55(1-2), 221–249 (2003)

    Article  Google Scholar 

  20. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  21. Guermeur, Y., Monfrini, E.: A quadratic loss multi-class SVM for which a radius-margin bound applies. Informatica 22(1), 73–96 (2011)

    MATH  MathSciNet  Google Scholar 

  22. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector machine. Journal of Machine Learning Research 5, 1391–1415 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Keerthi, S.S., Chapelle, O., DeCoste, D.: Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research 7, 1493–1515 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Keerthi, S.S., Sindhwani, V., Chapelle, O.: An efficient method for gradient-based adaptation of hyperparameters in SVM models. In: NIPS, vol. 19, pp. 673–380 (2007)

    Google Scholar 

  25. Luntz, A., Brailovsky, V.: On estimation of characters obtained in statistical procedure of recognition. Technicheskaya Kibernetica, 3 (1969) (in Russian)

    Google Scholar 

  26. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for adaboost. Machine Learning 42(3), 287–320 (2001)

    Article  MATH  Google Scholar 

  27. Rosset, S.: Following curved regularized optimization solution paths. In: NIPS, vol. 17, pp. 1153–1160 (2005)

    Google Scholar 

  28. Stone, M.: Asymptotics for and against cross-validation. Biometrika 64(1), 29–35 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  29. Suykens, J.A.K., Lukas, L., Van Dooren, P., De Moor, B., Vandewalle, J.: Least squares support vector machine classifiers: A large scale algorithm. In: Proceeding of the European Conference on Circuit Theory and Design, pp. 839–842 (1999)

    Google Scholar 

  30. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  31. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Inc., New York (1998)

    MATH  Google Scholar 

  32. Vapnik, V.N., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Computation 12(9), 2013–2036 (2000)

    Article  Google Scholar 

  33. Zhang, K., Kwok, J.T.: Density-weighted Nyström method for computing large kernel eigensystems. Neural Computation 21(1), 121–146 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, K., Tsang, I.W., Kwok, J.T.: Improved Nyström low-rank approximation and error analysis. In: ICML 2008, pp. 1232–1239 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonidal, R., Tindel, S., Guermeur, Y. (2014). Model Selection for the ℓ2-SVM by Following the Regularization Path. In: Nguyen, NT., Le-Thi, H.A. (eds) Transactions on Computational Intelligence XIII. Lecture Notes in Computer Science, vol 8342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54455-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54455-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54454-5

  • Online ISBN: 978-3-642-54455-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics