Skip to main content

Material Properties of Honeybee Silk

  • Chapter
  • First Online:
Honeybee Nests

Abstract

Colourless honeybee silk, ~3 μm diameter, is produced through a spinneret at the tip of the labium-hypopharynx. Successive generations of brood apply silk to the cell walls, making the cells smaller, as silk is deposited in the old brood combs. X-ray diffraction data show that honeybee silk contains ά-helical proteins ordered into coiled-coil structures, with an axial periodicity of about 28 nm, and form a four-stranded array parallel to the fibre axis. Honeybee fibroin is crystalline, but, when hydrated, is only half as stiff as when dry, although they are equal in strength. The fibroin is hygroscopic and highly distensible when solvated because of its molecular conformation. The mechanical properties of silk are independent of temperature. Lithium thiocyanate and urea virtually eliminate the yield point of honeybee silk tested both dry and in distilled water, and values for stress in the slope of the solvent-related curves is reduced. The solvents act directly on hydrogen bonds and then the silks behave as unconnected bends during tensile deformation. The components, hierarchical structure and the conditions of their production all affect the mechanical properties of natural silks. The amino acid sequence in honeybee silk protein provides an explanation of why the coiled-coil packing is atypically tight, and the most abundant core residue is the small amino acid, alanine. An atomistic simulation for the unfolding behaviour of ά-helical protein shows that two discrete transition states correspond to two fracture mechanisms. Six honeybee silk genes have now been identified, using a combination of genomic and proteomic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackbarow T, Chen X, Keten S, Buehler MJ (2007) Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of ά-helical and β-sheet protein domains. Proc Nat Acad Sci 104:16410–16415

    Article  CAS  PubMed  Google Scholar 

  • Ackbarow T, Sen D, Thaulow C, Buehler MJ (2009) Alpha-helical protein networks are self protective and flaw-tolerant. PLoS ONE 4(6):e6015. doi:10.1371/journal.pone.0006015

    Article  PubMed Central  PubMed  Google Scholar 

  • Andersen SO, Weis-Fogh T (1964) Resilin. A rubberlike protein in arthropod cuticle. Adv Insect Physiol 2:1–65

    Article  CAS  Google Scholar 

  • Arnhart L (1906) Die Zwischenräume zwischen den Wachsdrussenzellen der Honigbiene. Zool Anz 30:719–721

    Google Scholar 

  • Atkins EDT (1967) A four-strand coiled-coil model for some insect fibrous proteins. J Mol Biol 24:139–141

    Article  CAS  Google Scholar 

  • Buehler MJ, Ackbarow T (2007) Fracture mechanics of protein materials. Mater Today 10:48–58

    Article  Google Scholar 

  • Buehler MJ, Keten S (2008) Elasticity, strength and resilience: a comparative study on mechanical signatures of α-helix, β-sheet and tropocollagen domains. Nano Res 1:63–71

    Article  CAS  Google Scholar 

  • Chauvin R (1962) Sur le noircissement des vieilles cires. Ann Abeille 5:59–63

    Article  Google Scholar 

  • Flower NE, Kenchington W (1967) Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). J R Microsc Soc 86:297–310

    Article  CAS  PubMed  Google Scholar 

  • Hepburn HR (1986) Honeybees and wax: an experimental natural history. Springer, Berlin

    Book  Google Scholar 

  • Hepburn HR, Kurstjens SP (1984) On the strength of propolis (bee glue). Naturwissenschaften 71:591–592

    Article  Google Scholar 

  • Hepburn HR, Kurstjens SP (1988) The combs of honeybees as composite materials. Apidologie 19:25–36

    Article  Google Scholar 

  • Hepburn HR, Chandler HD, Davidoff MR (1979) Extensometric properties of insect fibroins: the green lacewing cross-β, honeybee ά-helical and greater waxmoth parallel-β conformations. Insect Biochem 9:69–77

    Article  CAS  Google Scholar 

  • Hepburn HR, Armstrong E, Kurstjens SP (1983) The ductility of native beeswax is optimally related to honeybee colony temperature. S Afr J Sci 79:416–417

    Google Scholar 

  • Hepburn HR, Muerrle T, Radloff SE (2007) The cell bases of honeybee combs. Apidologie 38:268–271

    Google Scholar 

  • Hepburn HR, Pirk CWW, Duangphakdee O (2013) Physical properties of honeybee silk: a review. Apidologie 44:600–610

    Google Scholar 

  • Huber F (1814) Nouvelles observations sur les abeilles. [English translation 1926]. Dadant, Hamilton

    Google Scholar 

  • Jay SC (1964) The cocoon of the honeybee, Apis mellifera L. Canad Ent 96:784–792

    Article  Google Scholar 

  • Kurstjens SP, Hepburn HR, Schoening FRL, Davidson BC (1985) The conversion of wax scales into comb wax by African honeybees. J Comp Physiol B156:95–102

    Article  Google Scholar 

  • Kurstjens SP, McClain E, Hepburn HR (1990) The proteins of beeswax. Naturwissenschaften 77:34–35

    Article  CAS  Google Scholar 

  • Lucas F, Rudall KM (1968) Extracellular fibrous proteins: the silks. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 26. Elsevier, Amsterdam, pp 475–558

    Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1960) Comparative studies of fibroins: I. the amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. J Mol Biol 2:339–349

    Article  CAS  PubMed  Google Scholar 

  • Rudall KM (1962) Silk and other cocoon proteins. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol IV. Academic Press, New York, pp 397–433

    Google Scholar 

  • Rudall KM (1965) Aspects of insect biochemistry. Academic Press, London

    Google Scholar 

  • Shao ZZ, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418:741

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Lua S, Du N, Liu X, Song J (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828

    Article  CAS  PubMed  Google Scholar 

  • Silva-Zacarin ECM, De Moraes RLMS, Taboga SR (2003) Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae). J Biosci Bangalore 28:753–764

    Article  Google Scholar 

  • Sutherland TD, Campbell PM, Weisman S, Trueman HE, Sriskantha A, Wanjura WJ, Haritos VS (2006) A highly divergent gene cluster in honeybees encodes a novel silk family. Genome Res 16:1414–1421

    Google Scholar 

  • Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JWH, Haritos VS (2007) Conservation of essential design features in coiled-coil silks. Mol Biol Evol 24:2424–2432

    Article  CAS  PubMed  Google Scholar 

  • Sutherland TD, Young J, Weisman S, Hayashi CY, Merrit D (2010a) Insect silk: one name, many materials. Ann Rev Entomol 55:171–188

    Article  CAS  Google Scholar 

  • Sutherland TD, Haritos VS, Trueman HE, Sriskantha A, Weisman S, Campbell PM (2010b) US Patent Application Publication. US2010/0100975 A1, April 22 2010

    Google Scholar 

  • Sutherland TD, Church JS, Hu X, Huson MG, Kaplan DL, Weisman S (2011a) Single honeybee silk protein mimics properties of multi-protein silk. PLoS ONE 6(2):16489. doi:10.1371/journal.pone.0016489

    Article  Google Scholar 

  • Sutherland TD, Weisman S, Walker AA, Mudie ST (2011b) The coiled-coil silk of bees, ants, and hornets. Biopolymers 97:446–454

    Article  PubMed  Google Scholar 

  • Sutherland TD, Haritos VS, Trueman H, Sriskantha A, Weisman S, Campbell PM (2013) European Patent Specification EP 1 931 702 B1

    Google Scholar 

  • Verlich AV (1930) Entwicklungsmechanische Studien an Bienenlarven. Z Wiss Zool 136:210–222

    Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  PubMed  Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Edward Arnold, London

    Google Scholar 

  • Walker AA, Warden AC, Trueman HE, Weisman S, Sutherland TD (2013) Micellar refolding of coiled-coil honeybee silk proteins. J Mater Chem B. doi: 10.1039/C3TB20611D

  • Warwicker JO (1960) Comparative studies of fibroins: II. the crystal structures of various fibroins. J Mol Biol 2:350–362

    Article  CAS  PubMed  Google Scholar 

  • Weisman S, Haritos VS, Church JS, Huson MG, Mudie ST, Rodgers AJW, Dumsday GJ, Sutherland TD (2010) Honeybee silk: recombinant protein production, assembly and fiber spinning. Biomaterials 31:2695–2700

    Article  CAS  PubMed  Google Scholar 

  • Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Si FW, Duan HL, Karihaloo BL, Wang J (2010a) Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc Nat Acad Sci 107:9502–9506

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Si FW, Duan HL, Wang J (2010b) Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomater 6:2165–2171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Hepburn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hepburn, H., Pirk, C., Duangphakdee, O. (2014). Material Properties of Honeybee Silk. In: Honeybee Nests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54328-9_18

Download citation

Publish with us

Policies and ethics