Skip to main content

The Value of 11C-Methionine PET in the Differential Diagnosis Between Brain Tumor Recurrence and Radionecrosis

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

11C-methionine (MET) positron emission tomography (PET) is one of the most used nuclear imaging modalities in brain tumors. Because of its characteristics, MET-PET should be able to provide us a high detection rate of brain tumors and good lesion delineation. This book chapter provides a clinical overview of important issues in primary brain tumors, recurrent brain tumors, and brain metastases. The role and dilemmas in neuroimaging are discussed. The working mechanism, scan interpretation, and quantification possibilities of MET-PET are explained. An overview is given of the role of MET-PET in gliomas (diagnostic accuracy, grading, prognosis, and assessment of tumor extent) with special focus on available literature in the role of MET-PET to differentiate between tumor progression/recurrent tumor and radiation necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnholtz-Sloan JS, Sloan AE, Davis FG et al (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872

    Article  PubMed  Google Scholar 

  • Bergstrom M, Lundqvist H, Ericson K et al (1987) Comparison of the accumulation kinetics of L-(methyl-11C)-methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol 28:225–229

    Article  CAS  PubMed  Google Scholar 

  • Boss A, Bisdas S, Kolb A et al (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51:1198–1205

    Article  PubMed  Google Scholar 

  • Brandsma D, Van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638

    Article  PubMed  Google Scholar 

  • Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    Article  PubMed  Google Scholar 

  • Braun V, Dempf S, Weller R et al (2002) Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data – results of a pilot study in 32 surgical cases. Acta Neurochir (Wien) 144:777–782

    Article  CAS  Google Scholar 

  • Cairncross G, Berkey B, Shaw E et al (2006) Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 24:2707–2714

    Article  CAS  PubMed  Google Scholar 

  • Ceyssens S, Van Laere K, de Groot T et al (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 27:1432–1437

    CAS  PubMed  Google Scholar 

  • Chung JK, Kim YK, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    Article  CAS  PubMed  Google Scholar 

  • Coope DJ, Cizek J, Eggers C et al (2007) Evaluation of primary brain tumors using 11C-methionine PET with reference to a normal methionine uptake map. J Nucl Med 48:1971–1980

    Article  CAS  PubMed  Google Scholar 

  • Dandois V, Rommel D, Renard L et al (2010) Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J Neuroradiol 37:89–97

    Article  CAS  PubMed  Google Scholar 

  • Delattre JY, Krol G, Thaler HT et al (1988) Distribution of brain metastases. Arch Neurol 45:741–744

    Article  CAS  PubMed  Google Scholar 

  • Dhermain FG, Hau P, Lanfermann H et al (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920

    Article  PubMed  Google Scholar 

  • Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592

    Article  CAS  PubMed  Google Scholar 

  • Fogh SE, Andrews DW, Glass J et al (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 28:3048–3053

    Article  PubMed Central  PubMed  Google Scholar 

  • Galldiks N, Kracht LW, Berthold F et al (2010) [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 96:231–239

    Article  PubMed Central  PubMed  Google Scholar 

  • Glaudemans AW, Quintero AM, Signore A (2012) PET/MRI in infectious and inflammatory diseases: will it be a useful improvement? Eur J Nucl Med Mol Imaging 39:745–749

    Article  PubMed Central  PubMed  Google Scholar 

  • Grosu AL, Weber WA, Riedel E et al (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomasbefore radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74

    Google Scholar 

  • Grosu AL, Astner ST, Riedel E et al (2011) An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys 81:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Gumprecht H, Grosu AL, Souvatsoglou M et al (2007) 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas. Zentralbl Neurochir 68:19–23

    Article  CAS  PubMed  Google Scholar 

  • Herholz K, Holzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Higer HP, Pedrosa P, Schuth M (1989) MR imaging of cerebral tumors: state of the art and work in progress. Neurosurg Rev 12:91–106

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AH, Thomas A, Kracht LW et al (2005) 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958

    CAS  PubMed  Google Scholar 

  • Jager PL, Vaalburg W, Pruim J et al (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–445

    CAS  PubMed  Google Scholar 

  • Johnson JD, Young B (1996) Demographics of brain metastasis. Neurosurg Clin N Am 7:337–344

    CAS  PubMed  Google Scholar 

  • Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Oh SW, Lim YJ et al (2010) Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 112:758–765

    Article  PubMed  Google Scholar 

  • Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170

    Article  CAS  PubMed  Google Scholar 

  • Kros JM (2011) Grading of gliomas: the road from eminence to evidence. J Neuropathol Exp Neurol 70:101–109

    Article  PubMed  Google Scholar 

  • Kubota K (2001) From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 15:471–486

    Article  CAS  PubMed  Google Scholar 

  • Langstrom B, Antoni G, Gullberg P et al (1987) Synthesis of L- and D-[methyl-11C]methionine. J Nucl Med 28:1037–1040

    CAS  PubMed  Google Scholar 

  • Lee IH, Piert M, Gomez-Hassan D et al (2009) Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73:479–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li DL, Xu YK, Wang QS et al (2012) (1)(1)C-methionine and (1)F-fluorodeoxyglucose positron emission tomography/CT in the evaluation of patients with suspected primary and residual/recurrent gliomas. Chin Med J (Engl) 125:91–96

    CAS  Google Scholar 

  • Lilja A, Lundqvist H, Olsson Y et al (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radiol 30:121–128

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavanee WK (2007) Classification of tumours of the CNS. Geneva: World Health Organization

    Google Scholar 

  • Mandonnet E, Delattre JY, Tanguy ML et al (2003) Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 53:524–528

    Article  PubMed  Google Scholar 

  • Massager N, David P, Goldman S et al (2000) Combined magnetic resonance imaging- and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. J Neurosurg 93:951–957

    Article  CAS  PubMed  Google Scholar 

  • Mineura K, Sasajima T, Suda Y et al (1990) Amino acid study of cerebral gliomas using positron emission tomography–analysis of (11C-methyl)-L-methionine uptake index. Neurol Med Chir (Tokyo) 30:997–1002

    Article  CAS  Google Scholar 

  • Mosskin M, Bergstrom M, Collins VP et al (1986) Positron emission tomography with 11C-methionine of intracranial tumours compared with histology of multiple biopsies. Acta Radiol Suppl 369:157–160

    CAS  PubMed  Google Scholar 

  • Mosskin M, Ericson K, Hindmarsh T et al (1989) Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 30:225–232

    Article  CAS  PubMed  Google Scholar 

  • Moulin-Romsee G, D’Hondt E, de Groot T et al (2007) Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087

    Article  PubMed  Google Scholar 

  • Nagata T, Tsuyuguchi N, Uda T et al (2011) Examination of 11C-methionine metabolism by the standardized uptake value in the normal brain of children. J Nucl Med 52:201–205

    Article  PubMed  Google Scholar 

  • Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    Article  PubMed  Google Scholar 

  • Niyazi M, Siefert A, Schwarz SB et al (2011) Therapeutic options for recurrent malignant glioma. Radiother Oncol 98:1–14

    Article  PubMed  Google Scholar 

  • Nuutinen J, Sonninen P, Lehikoinen P et al (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and Lmethyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202

    Google Scholar 

  • Okamoto S, Shiga T, Hattori N et al (2011) Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions. Ann Nucl Med 25:213–220

    Article  CAS  PubMed  Google Scholar 

  • Oude Munnink TH, Nagengast WB, Brouwers AH et al (2009) Molecular imaging of breast cancer. Breast 18(Suppl 3):S66–S73

    Article  PubMed  Google Scholar 

  • Paterson AH, Agarwal M, Lees A et al (1982) Brain metastases in breast cancer patients receiving adjuvant chemotherapy. Cancer 49:651–654

    Article  CAS  PubMed  Google Scholar 

  • Pirotte B, Goldman S, Dewitte O et al (2006) Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104:238–253

    Article  PubMed  Google Scholar 

  • Posner JB (1992) Management of brain metastases. Rev Neurol (Paris) 148:477–487

    CAS  Google Scholar 

  • Potzi C, Becherer A, Marosi C et al (2007) [11C] methionine and [18F] fluorodeoxyglucose PET in the follow-up of glioblastoma multiforme. J Neurooncol 84:305–314

    Article  PubMed  Google Scholar 

  • Pouratian N, Schiff D (2010) Management of low-grade glioma. Curr Neurol Neurosci Rep 10:224–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rigau V, Zouaoui S, Mathieu-Daude H et al (2011) French brain tumor database: 5-year histological results on 25 756 cases. Brain Pathol 21:633–644

    Article  PubMed  Google Scholar 

  • Sadeghi N, Salmon I, Decaestecker C et al (2007) Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol 28:455–461

    CAS  PubMed  Google Scholar 

  • Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764

    Article  PubMed  Google Scholar 

  • Sasaki M, Kuwabara Y, Yoshida T et al (1998) A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 25:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Suzuki M, Kuwata N et al (1999) Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 22:210–214

    Article  CAS  PubMed  Google Scholar 

  • Sawaya R, Bindal RK, Lang FF (2001) Brain tumors, 2nd edition: an encyclopedic approach. London: Churchill Livingstone. F999–F1026

    Google Scholar 

  • Schaefer PW, Budzik RF Jr, Gonzalez RG (1996) Imaging of cerebral metastases. Neurosurg Clin N Am 7:393–423

    CAS  PubMed  Google Scholar 

  • Schouten LJ, Rutten J, Huveneers HA et al (2002) Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 94:2698–2705

    Article  PubMed  Google Scholar 

  • Shinozaki N, Uchino Y, Yoshikawa K et al (2011) Discrimination between low-grade oligodendrogliomas and diffuse astrocytoma with the aid of 11C-methionine positron emission tomography. J Neurosurg 114:1640–1647

    Article  PubMed  Google Scholar 

  • Smits A, Westerberg E, Ribom D (2008) Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur J Nucl Med Mol Imaging 35:65–71

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Kumabe T, Takahashi T et al (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir (Tokyo) 38:342–347

    Article  CAS  Google Scholar 

  • Stark AM, van de Bergh J, Hedderich J et al (2012) Glioblastoma: clinical characteristics, prognostic factors and survival in 492 patients. Clin Neurol Neurosurg 114:840–845

    Google Scholar 

  • Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  • Sundermeyer ML, Meropol NJ, Rogatko A et al (2005) Changing patterns of bone and brain metastases in patients with colorectal cancer. Clin Colorectal Cancer 5:108–113

    Article  PubMed  Google Scholar 

  • Sze G, Milano E, Johnson C et al (1990) Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791

    CAS  PubMed  Google Scholar 

  • Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  • Tripathi M, Sharma R, Varshney R et al (2012) Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 37:158–163

    Article  PubMed  Google Scholar 

  • Tsuyuguchi N, Sunada I, Iwai Y et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98:1056–1064

    Google Scholar 

  • Tsuyuguchi N, Takami T, Sunada I et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery – in malignant glioma. Ann Nucl Med 18:291–296

    Google Scholar 

  • Ullrich RT, Kracht L, Brunn A et al (2009) Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 50:1962–1968

    Article  PubMed  Google Scholar 

  • Van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593

    Article  PubMed  Google Scholar 

  • van Waarde A, Elsinga PH (2008) Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des 14:3326–3339

    Article  PubMed  Google Scholar 

  • Van Laere LK, Ceyssens S, Van CF et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51

    Article  CAS  PubMed  Google Scholar 

  • Viader F, Derlon JM, Petit-Taboue MC et al (1993) Recurrent oligodendroglioma diagnosed with 11C-L-methionine and PET: a case report. Eur Neurol 33:248–251

    Article  CAS  PubMed  Google Scholar 

  • Voges J, Herholz K, Holzer T et al (1997) 11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact Funct Neurosurg 69:129–135

    Article  CAS  PubMed  Google Scholar 

  • Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  • Wick W (2011) Anaplastic gliomas: an emerging entity. Eur J Cancer 47(Suppl 3):S357–S358

    Article  PubMed  Google Scholar 

  • Yamamoto Y, Nishiyama Y, Kimura N et al (2008) 11C-acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET. Mol Imaging Biol 10:281–287

    Article  CAS  PubMed  Google Scholar 

  • Yamane T, Sakamoto S, Senda M (2010) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37:685–690

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors want to thank Dr. Annemiek M. R. Walenkamp for her help in writing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andor W. J. M. Glaudemans MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glaudemans, A.W.J.M., Enting, R.H., Heesters, M.A.A.M., van Rheenen, R.W.J., Dierckx, R.A.J.O., Slart, R.H.J.A. (2014). The Value of 11C-Methionine PET in the Differential Diagnosis Between Brain Tumor Recurrence and Radionecrosis. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics