Skip to main content

Gliomas

  • Chapter
  • First Online:
PET and SPECT in Neurology
  • 2386 Accesses

Abstract

Positron emission tomography (PET) is increasingly contributing to diagnosis and management decision in patients with brain tumours and especially gliomas. Through the use of FDG, amino acid tracers (11C-methionine, 18F-fluoroethyltyrosine and 18F-fluorodopa) and 18F-fluoro-thymidine, PET can contribute to accurate tumour grading and targeting of biopsies to the most active tumour areas. Amino acid tracers are particularly sensitive for delineating the extent of gliomas and detection of recurrence. They are also being investigated for planning of resection and conformal radiation therapy. Further PET applications include the monitoring and outcome prediction in radiotherapy and chemotherapy and the identification of hypoxic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22(6):633–638

    PubMed  Google Scholar 

  • Chao ST, Suh JH et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197

    CAS  PubMed  Google Scholar 

  • Charnley N, West CM et al (2006) Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int J Radiat Oncol Biol Phys 66(2):331–338

    CAS  PubMed  Google Scholar 

  • Chen W, Cloughesy T et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952

    CAS  PubMed  Google Scholar 

  • Chen W, Delaloye S et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721

    CAS  PubMed  Google Scholar 

  • Cizek J, Herholz K et al (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22(1):434–442

    PubMed  Google Scholar 

  • Colavolpe C, Chinot O et al (2012) FDG-PET predicts survival in recurrent high-grade gliomas treated with bevacizumab and irinotecan. Neuro Oncol 14(5):649–657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coope DJ, Cizek J et al (2007) Evaluation of primary brain tumors using 11C-methionine PET with reference to a normal methionine uptake map. J Nucl Med 48:1971–1980

    CAS  PubMed  Google Scholar 

  • De Witte O, Lefranc F et al (2001) FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol 49(2):157–163

    Google Scholar 

  • DeLaPaz RL, Patronas NJ et al (1983) Positron emission tomographic study of suppression of gray-matter glucose utilization by brain tumors. AJNR Am J Neuroradiol 4(3):826–829

    CAS  PubMed  Google Scholar 

  • Derlon JM, Petit-Taboue MC et al (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. Neurosurgery 40(2):276–288

    CAS  PubMed  Google Scholar 

  • Derlon JM, Chapon F et al (2000) Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27(7):778–787

    CAS  PubMed  Google Scholar 

  • Dierckx RA, Martin JJ et al (1994) Sensitivity and specificity of thallium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumours. Eur J Nucl Med 21(7):621–633

    CAS  PubMed  Google Scholar 

  • Douw L, Klein M et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8(9):810–818

    PubMed  Google Scholar 

  • Eary JF, Mankoff DA et al (1999) 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 59(3):615–621

    CAS  PubMed  Google Scholar 

  • Floeth FW, Pauleit D et al (2006) 18F-FET PET differentiation of ring-enhancing brain lesions. J Nucl Med 47(5):776–782

    CAS  PubMed  Google Scholar 

  • Galldiks N, Kracht LW et al (2006) Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33(5):516–524

    CAS  PubMed  Google Scholar 

  • Galldiks N, Kracht LW et al (2010a) [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 96(2):231–239

    PubMed Central  PubMed  Google Scholar 

  • Galldiks N, Ullrich R et al (2010b) Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging 37(1):84–92

    PubMed Central  PubMed  Google Scholar 

  • Goldman S, Levivier M et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38(9):1459–1462

    CAS  PubMed  Google Scholar 

  • Gomez-Rio M, Rodriguez-Fernandez A et al (2008) Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging 35(5):966–975

    PubMed  Google Scholar 

  • Haroon HA, Buckley DL et al (2004) A comparison of Ktrans measurements obtained with conventional and first pass pharmacokinetic models in human gliomas. J Magn Reson Imaging 19(5):527–536

    PubMed  Google Scholar 

  • Heiss WD, Wienhard K et al (1996) F-Dopa as an amino acid tracer to detect brain tumors. J Nucl Med 37:1180–1182

    CAS  PubMed  Google Scholar 

  • Herholz K, Reulen HJ et al (1997) Preoperative activation and intraoperative stimulation of language-related areas in glioma patients. Neurosurgery 41:1253–1262

    CAS  PubMed  Google Scholar 

  • Herholz K, Holzer T et al (1998) 11C-Methionine PET for differential diagnosis of low-grade gliomas. Neurology 50(5):1316–1322

    CAS  PubMed  Google Scholar 

  • Herholz K, Coope D et al (2007) Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 6(8):711–724

    CAS  PubMed  Google Scholar 

  • Herholz K, Langen K-J et al (2012) Brain tumors. Semin Nucl Med 42(6):375–389

    Google Scholar 

  • Hirata K, Terasaka S et al (2012) (18)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging 39:760–770

    Google Scholar 

  • Holzer T, Herholz K et al (1993) FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 17(5):681–687

    CAS  PubMed  Google Scholar 

  • Hutterer M, Nowosielski M et al (2011) O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 52(6):856–864

    CAS  PubMed  Google Scholar 

  • Hygino da Cruz LC Jr, Rodriguez I et al (2011) Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 32(11):1978–1985

    PubMed  Google Scholar 

  • Ichimura K, Pearson DM et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11(4):341–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen NL, Graute V et al (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39(6):1021–1029

    CAS  PubMed  Google Scholar 

  • Kahn D, Follett KA et al (1994) Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F- fluorodeoxyglucose PET. AJR 163(6):1459–1465

    CAS  PubMed  Google Scholar 

  • Kapoor GS, Gocke TA et al (2009) Magnetic resonance perfusion-weighted imaging defines angiogenic subtypes of oligodendroglioma according to 1p19q and EGFR status. J Neurooncol 92(3):373–386

    PubMed  Google Scholar 

  • Kaschten B, Stevenaert A et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18- fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39(5):778–785

    CAS  PubMed  Google Scholar 

  • Kawai N, Maeda Y et al (2011) Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 38(3):441–450

    CAS  PubMed  Google Scholar 

  • Kim S, Chung JK et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1):52–59

    CAS  PubMed  Google Scholar 

  • Kim YH, Oh SW et al (2010) Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 112(9):758–765

    PubMed  Google Scholar 

  • Kleihues P, Burger PC et al (1993) Histological typing of tumors of the central nervous system. Springer, Berlin

    Google Scholar 

  • Koch CJ, Scheuermann JS et al (2010) Biodistribution and dosimetry of (18)F-EF5 in cancer patients with preliminary comparison of (18)F-EF5 uptake versus EF5 binding in human glioblastoma. Eur J Nucl Med Mol Imaging 37(11):2048–2059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kracht LW, Miletic H et al (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10(21):7163–7170

    CAS  PubMed  Google Scholar 

  • Krohn KA, Mankoff DA et al (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32(7):663–671

    CAS  PubMed  Google Scholar 

  • Kumar AJ, Leeds NE et al (2010) Magnetic resonance imaging features of pilocytic astrocytoma of the brain mimicking high-grade gliomas. J Comput Assist Tomogr 34(4):601–611

    PubMed  Google Scholar 

  • Kunz M, Thon N et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 13(3):307–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lam WW, Ng DC et al (2011) Promising role of [18F] fluorocholine PET/CT vs [18F] fluorodeoxyglucose PET/CT in primary brain tumors-early experience. Clin Neurol Neurosurg 113(2):156–161

    PubMed  Google Scholar 

  • Langen KJ, Broer S (2004) Molecular transport mechanisms of radiolabeled amino acids for PET and SPECT. J Nucl Med 45(9):1435–1436

    CAS  PubMed  Google Scholar 

  • Langen KJ, Herzog H et al (1988) Tomographic studies of rCBF with [99mTc]-HM-PAO SPECT in patients with brain tumors: comparison with C15O2 continuous inhalation technique and PET. J Cereb Blood Flow Metab 8(6):S90–S94

    CAS  PubMed  Google Scholar 

  • Ledezma CJ, Chen W et al (2009) 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: initial experience. Eur J Radiol 71(2):242–248

    PubMed  Google Scholar 

  • Li DL, Xu YK et al (2012) 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography/CT in the evaluation of patients with suspected primary and residual/recurrent gliomas. Chin Med J (Engl) 125(1):91–96

    CAS  Google Scholar 

  • Ludemann L, Grieger W et al (2006) Glioma assessment using quantitative blood volume maps generated by T1-weighted dynamic contrast-enhanced magnetic resonance imaging: a receiver operating characteristic study. Acta Radiol 47(3):303–310

    CAS  PubMed  Google Scholar 

  • Maia AC Jr, Malheiros SM et al (2004) Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg 101(6):970–976

    PubMed  Google Scholar 

  • Maia AC Jr, Malheiros SM et al (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 26(4):777–783

    PubMed  Google Scholar 

  • Masui K, Cloughesy TF et al (2012) Review: molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol Appl Neurobiol 38(3):271–291

    CAS  PubMed  Google Scholar 

  • Miyagawa T, Oku T et al (1998) “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab 18(5):500–509

    CAS  PubMed  Google Scholar 

  • Mosskin M, Ericson K et al (1989) Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 30(3):225–232

    CAS  PubMed  Google Scholar 

  • Moulin-Romsee G, D’Hondt E et al (2007) Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34(12):2082–2087

    PubMed  Google Scholar 

  • Ogawa T, Kanno I et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl- 11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32(3):197–202

    CAS  PubMed  Google Scholar 

  • Ohtani T, Kurihara H et al (2001) Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 28(11):1664–1670

    CAS  PubMed  Google Scholar 

  • Padma MV, Said S et al (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64(3):227–237

    CAS  PubMed  Google Scholar 

  • Pardo FS, Aronen HJ et al (2004) Correlation of FDG-PET interpretation with survival in a cohort of glioma patients. Anticancer Res 24(4):2359–2365

    PubMed  Google Scholar 

  • Patronas NJ, Di Chiro G et al (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62(6):816–822

    CAS  PubMed  Google Scholar 

  • Pauleit D, Floeth F et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3):678–687

    PubMed  Google Scholar 

  • Pauleit D, Stoffels G et al (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36(7):779–787

    CAS  PubMed  Google Scholar 

  • Pirotte B, Goldman S et al (2004a) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101(3):476–483

    CAS  PubMed  Google Scholar 

  • Pirotte B, Goldman S et al (2004b) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45(8):1293–1298

    CAS  PubMed  Google Scholar 

  • Pirotte BJ, Levivier M et al (2009) Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 64(3):471–481, discussion 481

    PubMed  Google Scholar 

  • Popperl G, Gotz C et al (2004) Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31(11):1464–1470

    PubMed  Google Scholar 

  • Popperl G, Kreth FW et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34(12):1933–1942

    PubMed  Google Scholar 

  • Potzi C, Becherer A et al (2007) [11C] methionine and [18F] fluorodeoxyglucose PET in the follow-up of glioblastoma multiforme. J Neurooncol 84(3):305–314

    PubMed  Google Scholar 

  • Price SJ, Fryer TD et al (2009) Imaging regional variation of cellular proliferation in gliomas using 3′-deoxy-3′-[18F]fluorothymidine positron-emission tomography: an image-guided biopsy study. Clin Radiol 64(1):52–63

    CAS  PubMed  Google Scholar 

  • Prieto E, Marti-Climent JM et al (2011) Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 52(6):865–872

    PubMed  Google Scholar 

  • Rachinger W, Goetz C et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3):505–511, discussion 505-511

    PubMed  Google Scholar 

  • Reardon DA, Galanis E et al (2011) Clinical trial end points for high-grade glioma: the evolving landscape. Neuro Oncol 13(3):353–361

    PubMed Central  PubMed  Google Scholar 

  • Ribom D, Smits A (2005) Baseline 11C-methionine PET reflects the natural course of grade 2 oligodendrogliomas. Neurol Res 27(5):516–521

    PubMed  Google Scholar 

  • Ricci PE, Karis JP et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re- evaluation of positron emission tomography? AJNR Am J Neuroradiol 19(3):407–413, see comments

    CAS  PubMed  Google Scholar 

  • Roelcke U, Radu E et al (1996) Association of 82Rubidium and 11C-methionine uptake in brain tumors measured by positron emission tomography. J Neuro Oncol 27(2):163–171

    CAS  Google Scholar 

  • Scherer HJ (1940) The forms of growth in gliomas and their practical significance. Brain 63(1):1–35

    Google Scholar 

  • Schnell O, Krebs B et al (2009) Imaging of integrin {alpha}v{beta}3 expression in patients with malignant glioma by [18F]galacto-RGD positron emission tomography. Neuro Oncol 11:861–870

    Google Scholar 

  • Shibahara I, Kumabe T et al (2010) Imaging of hypoxic lesions in patients with gliomas by using positron emission tomography with 1-(2-[18F] fluoro-1-[hydroxymethyl]ethoxy)methyl-2-nitroimidazole, a new 18F-labeled 2-nitroimidazole analog. J Neurosurg 113(2):358–368

    CAS  PubMed  Google Scholar 

  • Shields AF, Grierson JR et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336

    CAS  PubMed  Google Scholar 

  • Shinoura N, Nishijima M et al (1997) Brain tumors: detection with C-11 choline PET. Radiology 202(2):497–503

    CAS  PubMed  Google Scholar 

  • Shinozaki N, Uchino Y et al (2011) Discrimination between low-grade oligodendrogliomas and diffuse astrocytoma with the aid of 11C-methionine positron emission tomography. J Neurosurg 114(6):1640–1647

    PubMed  Google Scholar 

  • Smith EA, Carlos RC et al (2009) Developing a clinical decision model: MR spectroscopy to differentiate between recurrent tumor and radiation change in patients with new contrast-enhancing lesions. AJR Am J Roentgenol 192(2):W45–W52

    PubMed  Google Scholar 

  • Sonoda Y, Kumabe T et al (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir (Tokyo) 38(6):342–347

    CAS  Google Scholar 

  • Spence AM, Muzi M et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45(10):1653–1659

    PubMed  Google Scholar 

  • Spence AM, Muzi M et al (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14(9):2623–2630

    CAS  PubMed  Google Scholar 

  • Spence AM, Muzi M et al (2009) NCI-sponsored trial for the evaluation of safety and preliminary efficacy of 3′-deoxy-3′-[18F]fluorothymidine (FLT) as a marker of proliferation in patients with recurrent gliomas: preliminary efficacy studies. Mol Imaging Biol 11(5):343–355

    PubMed  Google Scholar 

  • Swanson KR, Chakraborty G et al (2009) Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med 50(1):36–44

    PubMed  Google Scholar 

  • Tedeschi G, Lundbom N et al (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87(4):516–524

    CAS  PubMed  Google Scholar 

  • Terakawa Y, Tsuyuguchi N et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    PubMed  Google Scholar 

  • Thiel A, Pietrzyk U et al (2000) Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography-magnetic resonance imaging coregistration: technical case report. Neurosurgery 46(1):232–234

    CAS  PubMed  Google Scholar 

  • Thompson TP, Lunsford LD et al (1999) Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 73(1–4):9–14

    CAS  PubMed  Google Scholar 

  • Tralins KS, Douglas JG et al (2002) Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med 43(12):1667–1673

    PubMed  Google Scholar 

  • Trigonis I, Jackson A (2010) Imaging pharmacodynamics in oncology: the potential significance of “flares”. Ann Nucl Med 24(3):137–147

    CAS  PubMed  Google Scholar 

  • Tripathi M, Sharma R et al (2009) Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med 34(12):878–883

    PubMed  Google Scholar 

  • Troost EG, Laverman P et al (2006) Imaging hypoxia after oxygenation-modification: comparing [18F]FMISO autoradiography with pimonidazole immunohistochemistry in human xenograft tumors. Radiother Oncol 80(2):157–164

    CAS  PubMed  Google Scholar 

  • Tsuyuguchi N, Takami T et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 18(4):291–296

    CAS  PubMed  Google Scholar 

  • Ullrich R, Backes H et al (2008) Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14(7):2049–2055

    CAS  PubMed  Google Scholar 

  • Ullrich RT, Kracht L et al (2009) Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 50(12):1962–1968

    PubMed  Google Scholar 

  • Valk PE, Budinger TF et al (1988) PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69(6):830–838

    CAS  PubMed  Google Scholar 

  • Valk PE, Mathis CA et al (1992) Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 33(12):2133–2137

    CAS  PubMed  Google Scholar 

  • Van Laere K, Ceyssens S et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32(1):39–51

    CAS  PubMed  Google Scholar 

  • Verrey F, Closs EI et al (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447(5):532–542

    CAS  PubMed  Google Scholar 

  • Viel T, Talasila KM et al (2012) Analysis of the growth dynamics of angiogenesis-dependent and -independent experimental glioblastomas by multimodal small-animal PET and MRI. J Nucl Med 53(7):1135–1145

    CAS  PubMed  Google Scholar 

  • Waldman AD, Jackson A et al (2009) Quantitative imaging biomarkers in neuro-oncology. Nat Rev Clin Oncol 6(8):445–454

    CAS  PubMed  Google Scholar 

  • Walter F, Cloughesy T et al (2012) Impact of 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician’s perspective. J Nucl Med 53(3):393–398

    CAS  PubMed  Google Scholar 

  • Weber WA, Wester HJ et al (2000) O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27(5):542–549

    CAS  PubMed  Google Scholar 

  • Wyss M, Hofer S et al (2009) Early metabolic responses in temozolomide treated low-grade glioma patients. J Neurooncol 95(1):87–93

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Herholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herholz, K. (2014). Gliomas. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics