Skip to main content

Root and Root Endophytes from the Eyes of an Electron Microscopist

  • Chapter
  • First Online:
Root Engineering

Part of the book series: Soil Biology ((SOILBIOL,volume 40))

Abstract

Electron microscopes, because of their higher resolutions and magnifications, can be employed in many scientific areas where light microscopes have limited utility. SEM can achieve resolution better than 1 nm. Specimens can be observed in high and low vacuum and in wet conditions.

As a case study, SEM of Piriformospora indica was performed. The micrographs showed young growing hyphae. They were straight and parallel to each other, and the surface was smooth. As the sporulation commenced, hyphae became more nodulated and highly branched. Mature chlamydospores which were pear shaped were clearly observed. The junction of hypha and chlamydospores was broad. Confocal microscopy revealed that the fungus colonizes the root surface, enters the root cortex, and establishes inter- and intracellularly. Mycelium showed feeble autofluorescence. The young spores showed fluorescence, and at maturity the wall was thick and emitted strong fluorescence. Normally, it takes several hours for conventional staining, but it takes only few minutes by employing confocal microscopy in order to observe root colonization by the fungus. Future research on gene expression, microRNA, and the degradome sequencing to understand the plant–microbe interaction is warranted. For this target ultrastructure microscopes may play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ames RN, Ingham ER, Reid CPP (1982) Ultraviolet induced autofluorescence of arbuscular mycorrhizal root infections: an alternative to clearing and staining methods for assessing infections. Can J Microbiol 28:351–355

    Article  CAS  Google Scholar 

  • Conant NF, Smith DT, Baker RD, Callaway JL, Martin DS (1971) Manual of clinical mycology, 3rd edn. Saunders, Philadelphia, PA

    Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 102:18450–18457

    Article  Google Scholar 

  • Dreyer B, Morte A (2009) Chapter 8: Use of the autofluorescence properties of AM fungi for AM assessment and handling. In: Varma A, Kharkwal AC (eds) Symbiotic fungi, vol 18, Soil biology. Springer, Heidelberg, pp 123–140

    Chapter  Google Scholar 

  • Dreyer B, Morte A, Pérez-Gilabert M, Honrubia M (2006) Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method. Mycol Res 110:887–897

    Article  PubMed  Google Scholar 

  • Gamborg OL, Phillips GC (1996) Sterile techniques. In: Gamborg OL, Phillips GC (eds) Plant cell tissue and organ culture. Narosa, New Delhi, pp 67–79

    Google Scholar 

  • Gange AC, Bower E, Stagg PG, Aplin DM, Gillam AE, Bracken M (1999) A comparison of visualisation techniques for recording arbuscular mycorrhizal colonisation. New Phytol 142:123–132

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant symbiont: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Hill TW, Käfer E (2001) Improved protocols for aspergillus medium: trace elements and minimum medium salt stock solutions. Fungal Genet News Lett 48:20–21

    Google Scholar 

  • Hitachi Tabletop Microscope TM-1000. http://www.hht-eu.com/hht-eu/nte/Hitachi%20TM-1000_02_2006.pdf

  • Jabaji-Hare SH, Perumalla CJ, Kendrick WB (1984) Autofluorescence of vesicles, arbuscules and intercellular hyphae of a vesicular-arbuscular fungus in leek (Allium porrum) roots. Can J Bot 62:2665–2669

    Article  Google Scholar 

  • Johnson JM, Sherameti I, Pyniarlang LN, Oelmueller R (2012) Standardized conditions to study beneficial and beneficial traits in Piriformospora indica/Arabidopsis thaliana interaction. In: Varma A, Kost G, Oelmueller R (eds) Piriformospora indica-Sebacinales and their biotechnological applications. Springer, Berlin, pp 325–343

    Google Scholar 

  • Knoll M (1935) Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper. Zeitschrift für technische Physik 16:467–475

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • McMullan D (1953) An improved scanning electron microscope for opaque specimens. Proc IEE 100:245–256. doi:10.1049/pi-2.1953.0095

    Google Scholar 

  • McMullan D (1988) Von Ardenne and the scanning electron microscope. Proc R Microsc Soc 23:283–288

    Google Scholar 

  • McMullan D (2006) Scanning electron microscopy 1928–1965. Scanning 17:175–185

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays of tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Oatley CW, Nixon WC, Pease RFW (1965) Scanning electron microscopy. Adv Electronics Electron Phys 21:181–247

    Article  Google Scholar 

  • Oparka KJ, Duckett CM, Prior DA, Fisher DB (1994) Real time imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6:759–766

    Article  Google Scholar 

  • Oparka KJ, Prior DA, Wright KM (1995) Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana. J Exp Bot 46:187–197

    Article  CAS  Google Scholar 

  • Qiang X, Weiss M, Kogel K-H, Schaefer P (2011) Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 13:508–518. doi:10.1111/J.1364-3703.2011.00764.X

    Article  PubMed  Google Scholar 

  • Rath M, Grolig F, Haueisen J, Imhof S (2013) Combining microtomy and confocal laser scanning microscopy for structural analysis of plant-fungal associations. Mycorrhiza. doi:10.1007/s00572-013-0530-y

    PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1421–1422

    Google Scholar 

  • Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Varma A, Oelmueller R (2005) Expression of a receptor kinase in Arabidopsis thaliana roots is stimulated by the Basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    Article  CAS  PubMed  Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmueller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmueller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis thaliana roots through a homeodomain transcription factor which binds to a conserved motif in their promoters. J Biol Chem 280:2641–2647

    Article  Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmueller R (2008) PYK 10, a B-glucosidase located in the endocytoplasmic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Dickson S (1991) Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Aust J Plant Physiol 18:637–648

    Article  Google Scholar 

  • Smith KCA, Oatley CW (1955) The scanning electron microscope and its fields of application. Br J Appl Phys 6:391

    Article  Google Scholar 

  • Su Z-Z, Mao L-J, Li N, Feng X-X, Yuan Z-L, Wang L-W, Lin F-C, Zhang C-L (2013) Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One 8(4):e61332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Toth R, Doane C, Bennett E, Alexander T (1990) Correlation between host-fungal surface areas and percent colonization in VA mycorrhizae. Mycologia 82:519–522

    Article  Google Scholar 

  • Varma A, Verma S, Sudha SN, Britta B, Franken P (1999) Piriformospora indica—a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varma A, Singh A, Sudha NS et al (2001) Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) The mycota, vol IX. Springer, Heidelberg, pp 125–150

    Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012a) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131

    Article  Google Scholar 

  • Varma A, Tripathi S, Prasad R et al (2012b) The symbiotic fungus Piriformospora indica: review. In: Hock B (ed) The mycota, vol XXL. Springer, Berlin, pp 231–254

    Google Scholar 

  • Varma A, Chordia P, Bakshi M, Oelmueller R (2013a) Introduction to Sebacinales. In: Ajit V, Gerhard K, Ralf O (eds) Piriformospora indica: Sebacinales and their biotechnological applications. Springer, Heidelberg, pp 3–24

    Google Scholar 

  • Varma A, Kost G, Oelmueller R (2013b) Piriformospora indica: Sebacinales and their biotechnological applications. Springer, Heidelberg

    Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–902

    Article  CAS  Google Scholar 

  • Vierheilig H, Bo¨ckenhoff A, Knoblauch M, Juge C, Van Bel AJE, Grundler MW, Piché Y, Wyss U (1999) In vivo observations of the arbuscular mycorrhizal fungus Glomus mosseae in roots by confocal laser scanning microscopy. Mycol Res 103:311–314

    Article  Google Scholar 

  • Vierheilig H, Knoblauch M, Juergensen K, van Bel A, Grundler MW, Piché Y (2001) Imaging arbuscular mycorrhizal structures in living roots of Nicotiana tabacum by light, epifluorescence and confocal laser scanning microscopy. Can J Bot 79:231–237

    Google Scholar 

  • von Ardenne M (1937) Improvements in electron microscopes. GB 511204, convention date (Germany), 18 Feb 1937

    Google Scholar 

  • von Ardenne M (1938a) Das Elektronen-Rastermikroskop. Theoretische Grundlagen. Z Phys (in German) 109:553–572

    Article  Google Scholar 

  • von Ardenne M (1938b) Das Elektronen-Rastermikroskop. Praktische Ausführung. Zeitschrift für technische Physik (in German) 19:407–416

    Google Scholar 

  • Weiß M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1002–1010

    Google Scholar 

  • Wells OC (1957) The construction of a scanning electron microscope and its application to the study of fibres. Ph.D. dissertation, Cambridge University

    Google Scholar 

  • Zuccaro A, Basiewicz M, Zurawska M, Biedenkopf D, Kogel K-H (2009) Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genet Biol 46:542–550

    Article  Google Scholar 

  • Zuccaro A, Lahrmann U, Ldener UG, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PloS Pathog 7:e1002290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zworykin VA, Hillier J, Snyder RL (1942) A scanning electron microscope. ASTM Bull 117:15–23

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. A. Morte for her useful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma .

Editor information

Editors and Affiliations

Appendix

Appendix

Hill and Käfer medium (2001)

Composition

(g/L)

Glucose

20.0

Peptone

2.0

Yeast extract

1.0

Casein hydrolysate

1.0

Vitamin stock solution

1.0 mL

Macroelements from stock

50.0 mL

Microelements from stock

2.5 mL

Agar

0.8 % (w/v)

CaCl2

0.1 M, 1.0 mL

FeCl3

0.1 M, 1.0 mL

pH

5.8

Macroelements stock

(g/L)

NaNO3

120.0

KCl

10.4

MgSO4 ∙ 7H2O

10.4

KH2PO4

30.4

Minor elements stock

(g/L)

ZnSO4

22.0

H3BO3

11.0

MnCl2â‹…4H2O

5.0

CoCl2â‹…6 H2O

1.6

CuSO4â‹…5 H2O

1.6

(NH4)6Mo7O24â‹…7H2O

1.1

Na2EDTA

50.0

Vitamins

% (w/v)

Biotin

0.05

Nicotinamide

0.5

Pyridoxal phosphate

0.1

Amino benzoic acid

0.1

Riboflavin

0.25

  1. The pH was adjusted to 5.8 with 1 N HCl. All stocks were stored at 4 °C except the vitamins which were stored at −20 °C

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lou, B. et al. (2014). Root and Root Endophytes from the Eyes of an Electron Microscopist. In: Morte, A., Varma, A. (eds) Root Engineering. Soil Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54276-3_22

Download citation

Publish with us

Policies and ethics