Skip to main content

Electrospun Nanofibers for Air Filtration

  • Chapter
  • First Online:
Electrospun Nanofibers for Energy and Environmental Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Fine particle pollution resulting from the rapid urbanization and industrialization is one of the most serious sources of air pollution. In response to the recognized threats of fine particles to the environment and human bodies, the pursuit of novel, high-performance, energy saving, and environmentally friendly filter medium has gained great interest in recent years. Electrospun nanofibrous membranes, as one of the utmost promising and versatile filter media for fine particle filtration, possess several fascinating features such as remarkable specific surface area, high open porosity, and interconnected porous structure. More significantly, electrospun nanofiber-based filter media are expected to have extremely high filtration efficiency for fine particle and relatively low pressure drop due to the unique structure of electrospun nanofibers. In this chapter, we summarize the recent progress in the development of electrospun nanofibrous membranes (e.g., organic, hybrid, inorganic) for fine particle filtration, describe the types of nanofibrous materials that have been developed, and discuss their structure variables and particle filtration performance in detail. This chapter may trigger the development of advanced nanofibrous filter media for fine particle emissions from anthropogenic polluted atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodríguez S, Querol X, Alastuey A, Viana MM, Alarcón M, Mantilla E, Ruiz CR (2004) Comparative p M10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci Total Environ 328(1–3):95–113, http://dx.doi.org/10.1016/S0048-9697(03)00411-X

    Article  Google Scholar 

  2. Querol X, Alastuey A, Rodriguez S, Plana F, Mantilla E, Ruiz CR (2001) Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos Environ 35(5):845–858, http://dx.doi.org/10.1016/S1352-2310(00)00387-3

    Article  Google Scholar 

  3. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151(2):362–367, http://dx.doi.org/10.1016/j.envpol.2007.06.012

    Article  Google Scholar 

  4. Peukert W (1998) High temperature filtration in the process industry. Filtr Separat 35(5): 461–464, http://dx.doi.org/10.1016/S0015-1882(98)80015-3

    Article  Google Scholar 

  5. Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(8):1526–1537, http://dx.doi.org/10.1016/j.atmosenv.2005.10.039

    Article  Google Scholar 

  6. Wang CS, Otani Y (2012) Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res. doi:10.1021/ie300574m

  7. Adiletta JG (1999) Fibrous nonwoven web. US Patent 5,954,962, 21 Sept 1999

    Google Scholar 

  8. Hung CH, Leung WWF (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42, http://dx.doi.org/10.1016/j.seppur.2011.03.008

    Article  Google Scholar 

  9. Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334. doi:10.1039/b804128h

    Article  Google Scholar 

  10. Ma H, Hsiao BS, Chu B (2011) Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer 52(12):2594–2599. doi:10.1016/j.polymer.2011.03.051

    Article  Google Scholar 

  11. Wang N, Wang X, Ding B, Yu J, Sun G (2012) Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. J Mater Chem 22(4):1445–1452. doi:10.1039/c1jm14299b

    Article  Google Scholar 

  12. Tanaka S, Doi A, Nakatani N, Katayama Y, Miyake Y (2009) Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon 47(11):2688–2698, http://dx.doi.org/10.1016/j.carbon.2009.05.024

    Article  Google Scholar 

  13. Wang D, Sun G, Chiou BS (2007) A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol Mater Eng 292(4):407–414. doi:10.1002/mame.200600460

    Article  Google Scholar 

  14. Qiu P, Mao C (2010) Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution. ACS Nano 4(3):1573–1579. doi:10.1021/nn9009196

    Article  Google Scholar 

  15. Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chem Soc 124(12):2880–2881. doi:10.1021/ja0177105

    Article  Google Scholar 

  16. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592, http://dx.doi.org/10.1016/S0032-3861(99)00068-3

    Article  Google Scholar 

  17. Ding B, Kim HY, Lee SC, Lee DR, Choi KJ (2002) Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fiber Polym 3(2):73–79. doi:10.1007/bf02875403

    Article  Google Scholar 

  18. Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45(6):1895–1902. doi:10.1016/j.polymer.2004.01.026

    Article  Google Scholar 

  19. Wu J, Wang N, Zhao Y, Jiang L (2013) Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J Mater Chem A 1(25):7290–7305. doi:10.1039/c3ta10451f

    Article  Google Scholar 

  20. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energ Environ Sci 1(2):205–221. doi:10.1039/b809074m

    Article  Google Scholar 

  21. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22(26):12953–12971. doi:10.1039/c2jm30966a

    Article  Google Scholar 

  22. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625. doi:10.1021/bm200401p

    Article  Google Scholar 

  23. Si Y, Ren T, Li Y, Ding B, Yu J (2012) Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 50(14):5176–5185. doi:10.1016/j.carbon.2012.06.059

    Article  Google Scholar 

  24. Yeom B, Shim E, Pourdeyhimi B (2010) Boehmite nanoparticles incorporated electrospun nylon-6 nanofiber web for new electret filter media. Macromol Res 18(9):884–890. doi:10.1007/s13233-010-0910-5

    Article  Google Scholar 

  25. Gule NP, de Kwaadsteniet M, Cloete TE, Klumperman B (2012) Electrospun poly(vinyl alcohol) nanofibres with biocidal additives for application in filter media, 1-properties affecting fibre morphology and characterisation. Macromol Mater Eng 297(7):609–617. doi:10.1002/mame.201100275

    Article  Google Scholar 

  26. Kim SJ, Nam YS, Rhee DM, Park HS, Park WH (2007) Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur Polym J 43(8):3146–3152, http://dx.doi.org/10.1016/j.eurpolymj.2007.04.046

    Article  Google Scholar 

  27. Zhang S, Shim WS, Kim J (2009) Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency. Mater Design 30(9):3659–3666, http://dx.doi.org/10.1016/j.matdes.2009.02.017

    Article  Google Scholar 

  28. Ahn YC, Park SK, Kim GT, Hwang YJ, Lee CG, Shin HS, Lee JK (2006) Development of high efficiency nanofilters made of nanofibers. Current Applied Physics 6(6):1030–1035, http://dx.doi.org/10.1016/j.cap.2005.07.013

    Article  Google Scholar 

  29. Heikkilä P, Taipale A, Lehtimäki M, Harlin A (2008) Electrospinning of polyamides with different chain compositions for filtration application. Polym Eng Sci 48(6):1168–1176. doi:10.1002/pen.21070

    Article  Google Scholar 

  30. Gibson P, Schreuder GH, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A: Physicochem Eng Asp 187–188:469–481, http://dx.doi.org/10.1016/S0927-7757(01)00616-1

    Article  Google Scholar 

  31. Kim G, Ahn Y, Lee J (2008) Characteristics of nylon 6 nanofilter for removing ultra fine particles. Korean J Chem Eng 25(2):368–372. doi:10.1007/s11814-008-0061-y

    Article  Google Scholar 

  32. Faccini M, Vaquero C, Amantia D (2012) Development of protective clothing against nanoparticle based on electrospun nanofibers. J Nanomater 2012:1–9. doi:10.1155/2012/892894

    Article  Google Scholar 

  33. Guibo Y, Qing Z, Yahong Z, Yin Y, Yumin Y (2013) The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: filtration potential, thermal treatment, and their continuous production. J Appl Polym Sci 128(2):1061–1069. doi:10.1002/app.38211

    Article  Google Scholar 

  34. Fitzer E (1989) Pan-based carbon fibers-present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5):621–645, http://dx.doi.org/10.1016/0008-6223(89)90197-8

    Article  Google Scholar 

  35. Chen JC, Harrison IR (2002) Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF). Carbon 40(1):25–45, http://dx.doi.org/10.1016/S0008-6223(01)00050-1

    Article  Google Scholar 

  36. Barhate RS, Loong CK, Ramakrishna S (2006) Preparation and characterization of nanofibrous filtering media. J Membrane Sci 283(1–2):209–218, http://dx.doi.org/10.1016/j.memsci.2006.06.030

    Article  Google Scholar 

  37. Yun KM, Hogan CJ Jr, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759, http://dx.doi.org/10.1016/j.ces.2007.06.007

    Article  Google Scholar 

  38. Kim K, Lee C, Kim I, Kim J (2009) Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fiber Polym 10(1):60–64. doi:10.1007/s12221-009-0060-6

    Article  Google Scholar 

  39. Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K (2010) Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Sep Purif Technol 75(3):340–345. doi:10.1016/j.seppur.2010.09.002

    Article  Google Scholar 

  40. Mei Y, Wang Z, Li X (2013) Improving filtration performance of electrospun nanofiber mats by a bimodal method. J Appl Polym Sci 128(2):1089–1094. doi:10.1002/app.38296

    Article  Google Scholar 

  41. Zhang Q, Welch J, Park H, Wu CY, Sigmund W, Marijnissen JCM (2010) Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J Aerosol Sci 41(2):230–236, http://dx.doi.org/10.1016/j.jaerosci.2009.10.001

    Article  Google Scholar 

  42. Mao X, Chen Y, Si Y, Li Y, Wan H, Yu J, Sun G, Ding B (2013) Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances. RSC Adv 3(20):7562–7569. doi:10.1039/c3ra23326j

    Article  Google Scholar 

  43. Ge J, Si Y, Fu F, Wang J, Yang J, Cui L, Ding B, Yu J, Sun G (2013) Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Adv 3(7):2248–2255. doi:10.1039/c2ra22111j

    Article  Google Scholar 

  44. Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Polyurethane adhesive nanocomposites as gas permeation barrier. Macromolecules 36(26):9851–9858. doi:10.1021/ma035077x

    Article  Google Scholar 

  45. Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623, http://dx.doi.org/10.1016/j.ces.2010.10.035

    Google Scholar 

  46. Sambaer W, Zatloukal M, Kimmer D (2012) 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem Eng Sci 82:299–311, http://dx.doi.org/10.1016/j.ces.2012.07.031

    Article  Google Scholar 

  47. Wang N, Raza A, Si Y, Yu J, Sun G, Ding B (2013) Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J Colloid Interface Sci 398:240–246, http://dx.doi.org/10.1016/j.jcis.2013.02.019

    Article  Google Scholar 

  48. Wang J, Raza A, Si Y, Cui L, Ge J, Ding B, Yu J (2012) Synthesis of superamphiphobic breathable membranes utilizing SiO2 nanoparticles decorated fluorinated polyurethane nanofibers. Nanoscale 4(23):7549–7556. doi:10.1039/c2nr32883f

    Article  Google Scholar 

  49. Stejskal J, Kratochvíl P, Helmstedt M (1996) Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir 12(14):3389–3392. doi:10.1021/la9506483

    Article  Google Scholar 

  50. Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci Polym Phy 40(13):1261–1268. doi:10.1002/polb.10191

    Article  Google Scholar 

  51. Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102(2):1285–1290. doi:10.1002/app.24361

    Article  Google Scholar 

  52. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Beck Tan NC (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42(19):8163–8170, http://dx.doi.org/10.1016/S0032-3861(01)00336-6

    Article  Google Scholar 

  53. Qin XH, Wang SY (2008) Electrospun nanofibers from crosslinked poly(vinyl alcohol) and its filtration efficiency. J Appl Polym Sci 109(2):951–956. doi:10.1002/app.28003

    Article  Google Scholar 

  54. Yu DG, Li XY, Wang X, Chian W, Liao YZ, Li Y (2013) Zero-order drug release cellulose acetate nanofibers prepared using coaxial electrospinning. Cellulose 20(1):379–389. doi:10.1007/s10570-012-9824-z

    Article  Google Scholar 

  55. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Delivery Rev 61(12):1033–1042, http://dx.doi.org/10.1016/j.addr.2009.07.007

    Article  Google Scholar 

  56. Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J (2009) A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. EP Patent 1,673,493, 8 Aug 2009

    Google Scholar 

  57. Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114(6):3524–3530. doi:10.1002/app.30891

    Article  Google Scholar 

  58. Li J, Gao F, Liu L, Zhang Z (2013) Needleless electro-spun nanofibers used for filtration of small particles. Express Polym Lett 7(8):683–689. doi:10.3144/expresspolymlett.2013.65

    Article  Google Scholar 

  59. Devanand K, Selser JC (1990) Polyethylene oxide does not necessarily aggregate in water. Nature 343(6260):739–741. doi:10.1038/343739a0

    Article  Google Scholar 

  60. Leung WWF, Hung CH, Yuen PT (2010) Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep Purif Technol 71(1):30–37. doi:10.1016/j.seppur.2009.10.017

    Article  Google Scholar 

  61. Patanaik A, Jacobs V, Anandjiwala RD (2010) Performance evaluation of electrospun nanofibrous membrane. J Membrane Sci 352(1–2):136–142, http://dx.doi.org/10.1016/j.memsci.2010.02.009

    Article  Google Scholar 

  62. Grafe TH, Graham KM (2003) Nanofiber webs from electrospinning. In: Proceedings of the 5th international conference on nonwovens in filtration, Stuttgart, p 1

    Google Scholar 

  63. Kanafchian M, Valizadeh M, Haghi A (2011) Electrospun nanofibers with application in nanocomposites. Korean J Chem Eng 28(2):428–439. doi:10.1007/s11814-010-0376-3

    Article  Google Scholar 

  64. Hsiao HY, Huang CM, Liu YY, Kuo YC, Chen H (2012) Effect of air blowing on the morphology and nanofiber properties of blowing-assisted electrospun polycarbonates. J Appl Polym Sci 124(6):4904–4914. doi:10.1002/app.35599

    Google Scholar 

  65. Morozov VN, Mikheev AY (2012) Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. J Membrane Sci 403–404:110–120, http://dx.doi.org/10.1016/j.memsci.2012.02.028

    Article  Google Scholar 

  66. Uyar T, Balan A, Toppare L, Besenbacher F (2009) Electrospinning of cyclodextrin functionalized poly(methyl methacrylate) (PMMA) nanofibers. Polymer 50(2):475–480, http://dx.doi.org/10.1016/j.polymer.2008.11.021

    Article  Google Scholar 

  67. Cho D, Naydich A, Frey MW, Joo YL (2013) Further improvement of air filtration efficiency of cellulose filters coated with nanofibers via inclusion of electrostatically active nanoparticles. Polymer 54(9):2364–2372, http://dx.doi.org/10.1016/j.polymer.2013.02.034

    Article  Google Scholar 

  68. Duan G, Jiang S, Chen S, Hou H (2010) Heat and solvent resistant electrospun polybenzoxazole nanofibers from methoxy-containing polyaramide. J Nanomater 2010:1–5. doi:10.1155/2010/219562

    Article  Google Scholar 

  69. Nakata K, Hun Kim S, Ohkoshi Y, Gotoh Y, Nagura M (2007) Electrospinning of poly (ether sulfone) and evaluation of the filtration efficiency. Sen’i Gakkaishi 63(12):307–312, http://jlc.jst.go.jp/JST.JSTAGE/fiber/63.307

    Article  Google Scholar 

  70. Moon S, Choi J, Farris RJ (2008) Preparation of aligned polyetherimide fiber by electrospinning. J Appl Polym Sci 109(2):691–694. doi:10.1002/app.27172

    Article  Google Scholar 

  71. Fukushima S, Karube Y, Kawakami H (2010) Preparation of ultrafine uniform electrospun polyimide nanofiber. Polym J 42(6):514–518. doi:10.1038/pj.2010.33

    Article  Google Scholar 

  72. Huang C, Chen S, Reneker DH, Lai C, Hou H (2006) High-strength mats from electrospun poly(p-phenylene biphenyltetracarboximide) nanofibers. Adv Mater 18(5):668–671. doi:10.1002/adma.200501806

    Article  Google Scholar 

  73. Shao C, Kim H, Gong J, Lee D (2002) A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology 13(5):635. doi:10.1088/0957-4484/13/5/319

    Article  Google Scholar 

  74. Yu H, Guo J, Zhu S, Li Y, Zhang Q, Zhu M (2012) Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution. Mater Lett 74:247–249, http://dx.doi.org/10.1016/j.matlet.2012.01.077

    Article  Google Scholar 

  75. Zhao Y, Tang Y, Guo Y, Bao X (2010) Studies of electrospinning process of zirconia nanofibers. Fiber Polym 11(8):1119–1122. doi:10.1007/s12221-010-1119-0

    Article  Google Scholar 

  76. Guo M, Ding B, Li X, Wang X, Yu J, Wang M (2009) Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J Phys Chem C 114(2):916–921. doi:10.1021/jp909672r

    Article  Google Scholar 

  77. Zhao F, Wang X, Ding B, Lin J, Hu J, Si Y, Yu J, Sun G (2011) Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Adv 1(8):1482–1488. doi:10.1039/c1ra00605c

    Article  Google Scholar 

  78. Yang L, Raza A, Si Y, Mao X, Shang Y, Ding B, Yu J, Deyab SS (2012) Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization. Nanoscale 4(20):6581–6587. doi:10.1039/c2nr32095a

    Article  Google Scholar 

  79. Mao X, Si Y, Chen Y, Yang L, Zhao F, Ding B, Yu J (2012) Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv 2(32):12216. doi:10.1039/c2ra22086e

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2013BAC01B02), National Basic Research Program of China (973 Program, 2011CB606103), the National Natural Science Foundation of China (No. 51173022 and U1232116), the Huo Yingdong Foundation (131070), and the Program for New Century Talents of the University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, N., Mao, X., Zhang, S., Yu, J., Ding, B. (2014). Electrospun Nanofibers for Air Filtration. In: Ding, B., Yu, J. (eds) Electrospun Nanofibers for Energy and Environmental Applications. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54160-5_12

Download citation

Publish with us

Policies and ethics