Skip to main content

Data and Information Dimensionality in Non-cooperative Face Recognition

  • Chapter
  • First Online:
Signal and Image Processing for Biometrics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 292))

Abstract

Data, information dimensionality and manifold learning techniques are related issues that are gaining prominence in biometrics. Problems dealing with large amounts of data often have dimensionality issues, leading to uncertainty and inefficiency. This chapter presents concepts of manifold learning and information geometry, and discusses how the manifold geometry can be exploited to obtain biometric data representations in lower dimensions. It is also explained how biometric data that are modeled with suitable probability distributions, can be classified accurately using geodesic distances on probabilistic manifolds, or approximations when the analytic geodesic distance solutions are not known. Also, we discuss some of the representative manifold based methods applied to face recognition, and point out future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that this is different from an actual embedding of the manifold in Euclidean space, see also [28].

References

  1. O’Neill B (1982) Elementary differential geometry, second revised edition. Academic Press, New York

    Google Scholar 

  2. Gray A, Abbena E, Salamon S (2006) Modern differential geometry of curves and surfaces with mathematica, 3rd edn. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  3. do Carmo MP, Flaherty F (1992) Riemannian geometry. Birkhäuser, Boston

    Google Scholar 

  4. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  5. Cai D, He X, Han J, Zhang HJ (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614

    Google Scholar 

  6. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell 29(12): 2143–2156

    Google Scholar 

  7. Lee JA, Verleysen M (2010) Nonlinear dimensionality reduction. Springer, New York

    Google Scholar 

  8. Izenman AJ (2008) Modern multivariate statistical techniques. Regression, classification, and manifold learning. Springer, New York

    Google Scholar 

  9. Hastie T, Stuetzle W (1989) Principal curves. J Am Stat Assoc 84:502–516

    Article  MATH  MathSciNet  Google Scholar 

  10. Leblanc M, Tibshirani R (1994) Adaptive principal surfaces. J Am Stat Assoc 89:53–64

    Article  MATH  Google Scholar 

  11. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  12. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice-Hall, London

    MATH  Google Scholar 

  13. Cramér H (1946) A contribution to the theory of statistical estimation. Skandinavisk Aktuarietidskrift 29:85–94

    MATH  Google Scholar 

  14. Rao CR (1945) Information and accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc 37:81–89

    MATH  MathSciNet  Google Scholar 

  15. Amari S, Nagaoka H (2000) Methods of information geometry. Transactions of Mathematical Monographs, vol 191. American Mathematical Society, New York

    Google Scholar 

  16. Murray M, Rice J (1993) Differential geometry and statistics. Monographs on Statistics and Applied Probability, vol 48. Chapman and Hall, New York

    Google Scholar 

  17. Kass RE, Vos PW (1997) Geometrical foundations of asymptotic inference. Wiley Series in Probability and Statistics. Wiley-Interscience, New York

    Google Scholar 

  18. Čenkov NN (1982) Statistical decision rules and optimal inference. Translations of Mathematical Monographs, vol 53. American Mathematical Society, Providence

    Google Scholar 

  19. Berman AP, Shapiro LG (1999) A flexible image database system for content-based retrieval. 17th Int Conf Pattern Recogn 75(1–2):175–195

    Google Scholar 

  20. Verdoolaege G, Scheunders P (2011) Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination. Int J Comput Vis 95(3):265–286

    Article  MATH  Google Scholar 

  21. Lenglet C, Rousson M, Deriche R (2006) DTI segmentation by statistical surface evolution. IEEE Trans Med Imaging 25(6):685–700

    Article  MathSciNet  Google Scholar 

  22. Lenglet C, Rousson M, Deriche R, Faugeras O (2006) Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J Math Imaging Vis 25(3):423–444

    Article  MathSciNet  Google Scholar 

  23. Castano-Moraga CA, Lenglet C, Deriche R, Ruiz-Alzola J (2007) A riemannian approach to anisotropic filtering of tensor fields. Signal Process 87(2):263–276

    Article  MATH  Google Scholar 

  24. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–692

    Article  MATH  Google Scholar 

  25. Verdoolaege G, Scheunders P (2011) On the geometry of multivariate generalized gaussian models. J Math Imaging Vis 43(3):180–193

    Article  MathSciNet  Google Scholar 

  26. Arwini K, Dodson CTJ (2008) Information geometry. Near randomness and near independence. Springer, New York

    MATH  Google Scholar 

  27. Burbea J, Rao CR (1982) Entropy differential metric, distance and divergence measures in probability spaces: a unified approach. J Multivar Anal 12(4):575–596

    Article  MATH  MathSciNet  Google Scholar 

  28. Verdoolaege G, Karagounis G, Murari A, Vega J, Van Oost G, JET-EFDA Contributors (2012) Modeling fusion data in probabilistic metric spaces: applications to the identification of confinement regimes and plasma disruptions. Fusion Sci Technol 62(2):356–365

    Google Scholar 

  29. Gómez E, Gómez-Villegas MA, Marín JM (1998) A multivariate generalization of the power exponential family of distributions. Commun Stat Theory Methods 27(3):589–600

    Article  MATH  Google Scholar 

  30. Mardia KV, Kent JT, Bibby JM (1982) Multivariate analysis. Academic Press, London

    Google Scholar 

  31. Skovgaard LT (1984) A Riemannian geometry of the multivariate normal model. Scand J Stat 11(4):211–223

    Google Scholar 

  32. Berkane M, Oden K, Bentler P (1997) Geodesic estimation in elliptical distributions. J Multivar Anal 63(1):35–46

    Article  MATH  MathSciNet  Google Scholar 

  33. Calvo M, Oller JM (2002) A distance between elliptical distributions based in an embedding into the Siegel group. J Comput Appl Math 145(2):319–334

    Article  MATH  MathSciNet  Google Scholar 

  34. MIT Vision and Modeling Group. Vision texture. online at http://vismod.media.mit.edu/vismod/imagery/VisionTexture/, 2010

  35. Kendall D (1984) Shape manifolds, procrustean metrics, and complex projective spaces. Bull Lond Math Soc 16:81–121

    Article  MATH  MathSciNet  Google Scholar 

  36. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    MATH  Google Scholar 

  37. Small CG (1996) The statistical theory of shape. Springer, New York

    Book  MATH  Google Scholar 

  38. Bhattacharya A, Bhattacharya R (2012) Nonparametric inference on manifolds. With applications to shape spaces. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  39. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. Proc IEEE Conf Comput Vis Pattern Recogn 1:511–518

    Google Scholar 

  40. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models—their training and application. Comput Vis Image Underst 61:38–59

    Article  Google Scholar 

  41. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23:681–685

    Article  Google Scholar 

  42. Vukadinovic D, Pantic M (2005) Fully automatic facial feature point detection using gabor feature based boosted classifiers. IEEE Int Conf Syst Man Cybern 2:1692–1698

    Google Scholar 

  43. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417–441

    Google Scholar 

  44. Langner O, Dotsch R, Bijlstra G, Wigboldus DHJ, Hawk ST, van Knippenberg A (2010) Presentation and validation of the radboud faces database. Cogn Emot 24(8):1377–1388

    Google Scholar 

  45. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  46. Thomaz CE, Giraldi GA (2010) A new ranking method for principal components analysis and its application to face image analysis. Image Vis Comput 28:902–913

    Google Scholar 

  47. Weinberger KQ, Saul LK (2006) An introduction to nonlinear dimensionality reduction by maximum variance unfolding. Proc Natl Conf Artif Intell 2:1683–1686

    Google Scholar 

  48. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  49. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Google Scholar 

  50. Chang Y, Hu C, Turk M (2003) Manifold of facial expression. IEEE international workshop on analysis and modeling of faces and gestures, pp 28–35

    Google Scholar 

  51. Shashua A, Levin A, Avidan S (2002) Manifold pursuit: a new approach to appearance based recognition. Int Conf Pattern Recognit 3:590–594

    Article  Google Scholar 

  52. Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res 4:119–155

    MathSciNet  Google Scholar 

  53. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14:585–591

    Google Scholar 

  54. He X, Niyogi P (2003) Locality preserving projections. Adv Neural Inf Process Syst 16: 153–160

    Google Scholar 

  55. Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence

    Google Scholar 

  56. Kovac J, Peer P, Solina F (2003) Human skin color clustering for face detection. Computer as a Tool. IEEE Reg 8 2:144–148

    Google Scholar 

  57. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Google Scholar 

  58. Hsu R-L, Abdel-Mottaleb M, Jain AK (2002) Face detection in color images. IEEE Trans Pattern Anal Mach Intell 24(5):696–706

    Google Scholar 

  59. Duda RO, Hart PE (1972) Use of the hough transformation to detect lines and curves in pictures. Commun ACM 15(1):11–15

    Article  Google Scholar 

  60. Carter KM, Raich R, Finn WG, Hero AO (2009) Fine: Fisher information nonparametric embedding. IEEE Trans Pattern Anal Mach Intell 31(11):2093–2098

    Google Scholar 

  61. Cox MAA, Cox TF (2008) Multidimensional scaling. Springer Handbooks of Computational Statistics. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Scharcanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verdoolaege, G., Soldera, J., Macedo, T., Scharcanski, J. (2014). Data and Information Dimensionality in Non-cooperative Face Recognition. In: Scharcanski, J., Proença, H., Du, E. (eds) Signal and Image Processing for Biometrics. Lecture Notes in Electrical Engineering, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54080-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54080-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54079-0

  • Online ISBN: 978-3-642-54080-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics