Skip to main content

Part of the book series: Power Systems ((POWSYS))

  • 1820 Accesses

Abstract

The general goals of system protection can be outlined as follows: maintaining the ability to deliver electric power, protection of equipment, keeping power system integrity and power quality, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Benmouyal, E.O. Schweitzer, A. Guzman, Synchronized phasor measurement in protective relays for protection, control, and analysis of electric protection, control, and analysis of electric power systems (2004) (Printed USA 20020927)

    Google Scholar 

  2. S. Chakrabarti, E. Kyriakides, T. Bi, D. Cai, V. Terzija, Measurements get together. IEEE Power Energ. Mag. (January–February 2009)

    Google Scholar 

  3. M. Begovic, D. Novosel, D. Karlsson et al., in Wide-Area Protection and Emergency Control. Proceedings of the IEEE, 93(5), 876–891 (May 2005)

    Google Scholar 

  4. U. Serizawa, M. Myoujin, K. Kitamura et al., Wide-area differential backup protection employing broadband communications and time transfer systems. IEEE Trans. Power Deliv. 13(4) (October 1998)

    Google Scholar 

  5. Y. Serizawa, H. Imamura, N. Sugaya, in Experimental Examination of Wide-Area Current Differential Backup Protection Employing Broadband Communications and Time Transfer Systems (1999) (0-7803-5569-5/99)

    Google Scholar 

  6. R. Giovanini, D.V. Coury, K.M. Hopkinson, J.S. Thorp, in A Primary and Backup Cooperative Protection System Based on Wide Area Agents. Transmission and Distribution Conference and Exposition: Latin America. IEEE/PES, pp. 428–434, doi: 10.1109/TDC.2004.1432418 (2004)

  7. D. Wang, S. Miao, X. Lin et al., in Design of a Novel Wide-Area Backup Protection System. Transmission and Distribution Conference and Exhibition: Asia and Pacific. IEEE/PES, pp. 1–6, doi: 10.1109/TDC.2001546766 (2005)

  8. R. Giovanini, D.V. Coury, K.M. Hopkinson, J.S. Thorp, A primary and backup cooperative protection system based on wide area agents. IEEE Trans. Power Deliv. 21(3) (July 2006)

    Google Scholar 

  9. J. De La Ree, V. Centeno, J.S. Thorp, A.G. Phadke, Synchronized phasor measurement applications in power systems. IEEE Trans. Smart Grid, 1(1) (June 2010)

    Google Scholar 

  10. M.M. Essia, M.E. Masoud, M.M. Elanwar, A novel back up wide area protection technique for power transmission grids using phasor measurement unit. IEEE Trans. Power Deliv. 25(1), 270–278 (January 2010)

    Google Scholar 

  11. Z. He, Z. Zhang, W. Chen, O.P. Malik, X. Yin, Wide-area backup protection algorithm based on fault component voltage distribution. IEEE Trans. Power Deliv. 26(4) (October 2011)

    Google Scholar 

  12. J. Ma, J. Li, J.S. Thorp, A.J. Arana, Q. Yang, A.G. Phadke, Fault steady state component-based wide area backup protection algorithm. IEEE Trans. Smart Grid 2(3) (September 2011)

    Google Scholar 

  13. M. Kezunovic, B. Perunicic, Synchronized sampling improves fault location. IEEE Comp. Appl. Power 8(2), 30 (1995). ISSN O8950156/95

    Google Scholar 

  14. M. Kezunovic, B. Perunicic, Automated transmission line fault analysis using synchronized sampling at two ends. IEEE Trans. Power Syst. 11(1) (February 1996)

    Google Scholar 

  15. K. Mazlumi, A. Abyaneh, S.H.H. Sadeghi, in Determination of Optimal PMU Placement for Fault-Location Observability, DRPT2008, Nanjing (April 2008)

    Google Scholar 

  16. M. Shiroei, S. Daniar, M. Akhbari, A New Algorithm for Fault Location on Transmission Lines. (IEEE, New York, 2009). 978-1-4244-4241-6/09

    Google Scholar 

  17. C. Zheng, Y. Dong, O. Gonen, M. Kezunovic, in Data Integration Used in New Applications and Control Center Visualization Tool, 2010 (978-1-4244-6551-410)

    Google Scholar 

  18. Z. Wang, Y. Zhang, J. Zhang, Principal Components Fault Location Based on WAMS-PMU Measure System. (IEEE, New York, 2011) 978-1-4577-1002-511

    Google Scholar 

  19. Y. Ohura, M. Suzuki et al., A predictive out-of-step protection system based on observation of the phase difference between substations. IEEE Trans. Power Deliv. 5(4), 1695–1704 (November 1990)

    Google Scholar 

  20. Y. Wang, Y. Yin, J. Hou, Coordinated Out-of-Step Protection System Based on WAMS. (IEEE, New York, 2005) 0-7803-9114-4/05

    Google Scholar 

  21. Z. Pakdel, Intelligent Instability Detection for Islanding Prediction (Virginia Polytehnic Institute, USA, 2011)

    Google Scholar 

  22. R. Diao, V. Vittal, K. Sun et al., Decision Tree Assisted Controlled Islanding for Preventing Cascading Events (IEEE, New york 2009) 978-1-4244-3811-209

    Google Scholar 

  23. F. Galvan, S. Mandal, M. Thomas, Phasor Measurement Units (PMU) Instrumental in Detecting and Managing the Electrical Island Created in the Aftermath of Hurrican (IEEE, New York, 2009) 978-1-4244-3811-2/09

    Google Scholar 

  24. L. Li, Y. Liu, Out-of-Step Splitting Framework Based on Adaptive Separation Detecting Criterion. (IEEE T&D Asia 2009)

    Google Scholar 

  25. T. Nagata, H. Sasaki, A multi-agent approach to power system restoration. IEEE Trans. Power Syst. 17(2), 457–462 (May 2002)

    Google Scholar 

  26. CIGRE Task Force C2.02.24, Defense Plan Against Extreme Contingencies, Technical Brochure 316, CIGRE, Paris (April 2007)

    Google Scholar 

  27. I.C. Decker, M.N. Agostini, A.S. Silva, D. Dotta, in Monitoring of a Large Scale Event in the Brazilian Power System by WAMS. IREP Symposium—Bulk Power System Dynamics and Control-VIII (IREP), Buzios (August 2010)

    Google Scholar 

  28. S. Corsi, A. Danelli, M. Pozzi, Emergency—Stability Controls Through HVDC Links. Power Engineering Society Summer Meeting, IEEE 2, 774–779 (25 July 2002)

    Google Scholar 

  29. P. Li, X. Wu, Y. Zhang, Analysis of Modulation Controllers of Multi-Infeed HVDC for CSG in 2008 (IEEE, New York, 2006) 1-4244-0111-906

    Google Scholar 

  30. X-M. Mao, Y. Zhang, L. Guan, X-C. Wu, Coordinated Control of Inter Area Oscillation in the China Southern Power Grid (IEEE, New York, 2006) 0885-8950

    Google Scholar 

  31. D. Westermann, H. Sauvain, Experiences with Wide Area Coordinated Control of Facts Devices and HVDC in a Real Time Environment (IEEE, New York, 2007) 978-1-4244-2

    Google Scholar 

  32. H.F. Latorre, M. Ghandhari, L.S. Eoder, Use of Local and Remote Information in POD Control of a VSC-HVDC (IEEE, New York, 2009) 978-1-4244-2235-7/09

    Google Scholar 

  33. Y. Li, C. Rehtanz, D.C. Yang, K. Gomer et al., in Wide-Area Time-Delay Damping Control to Prevent Power Oscillations in HVDC/AC Interconnected Power Systems. 2010 International Conference on Power System Technology (2010)

    Google Scholar 

  34. R. Preece, A.M. Almutairi, O. Marjanovic, J.V. Milanovic, Damping of Inter-area Oscillations by VSC-HVDC Active Power Modulation with Supplementary WAMS Based Modal LQG Controller. (IEEE, New York, 2011) 978-1-4577-1002-5/11

    Google Scholar 

  35. W. Juanjuan, F. Chuang, Z. Yao, Design of WAMS-based multiple HVDC damping control system. IEEE Trans. Smart Grid 2(2),363–374 (June 2011)

    Google Scholar 

  36. D. Povh, P. Thepparat, D. Westermann, Further Development of HVDC Control (IEEE, New York, 2011) 978-1-4244-8417-111

    Google Scholar 

  37. M.J. Damborg, M. Kim, J. Huang, S.S. Venkata, A.G. Phadke, in Adaptive Protection as Preventive and Emergency Control, 2000 (0-7803-6420-1)

    Google Scholar 

  38. S.H. Horowitz, D. Novosel, V. Madani, M. Adamiak, System-wide protection. IEEE Power Energ. Mag. (September–October 2008)

    Google Scholar 

  39. E.E. Bernabeu, J.S. Thorp, V. Centeno, Methodology for a security-dependability adaptive protection scheme based on data mining. IEEE Trans. Power (2011)

    Google Scholar 

  40. S.M. Amin, B.F. Wollenberg, Toward a smart grid. IEEE Power Energ. Mag. (September–October 2005)

    Google Scholar 

  41. K. Moslehi, R. Kumar, Vision for a self healing. ABB Rev. (April 2006)

    Google Scholar 

  42. H. Moslehi, A.B. Ranjit Kumar, P. Hirsch, in Feasibility of a Self-Healing Grid—Part I Methodology and Cost Models (IEEE, New York, 2006) 1-4244-0493-206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Arestova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arestova, A., Grobovoy, A. (2014). Protection Technologies. In: Häger, U., Rehtanz, C., Voropai, N. (eds) Monitoring, Control and Protection of Interconnected Power Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53848-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53848-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53847-6

  • Online ISBN: 978-3-642-53848-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics