Skip to main content

Medicinal Plants and Phytocompounds: A Potential Source of Novel Antibiofilm Agents

  • Chapter
  • First Online:
Antibiofilm Agents

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 8))

Abstract

Medicinal plants and plant-derived bioactive compounds are well known for their contribution to primary health care as a source novel drug discovery for various ailments. Emergence and spread of microbial drug resistance due to various mechanisms has impacted the efficacy of almost all old and new antibacterial drugs. The biofilm mode of microbial growth has significantly increased the survival strategies and resistance levels of microbes to drugs, making the treatment of infections more difficult. Currently, efforts are going on to develop novel strategies including targeting biofilms to treat infections. Various natural products are known to inhibit biofilm formation or preformed biofilms. In recent years medicinal plants and phytocompounds were reported with promising antibiofilm activity in vitro from different parts of the world. In this chapter we have reviewed the current literature on antibiofilm agents derived from medicinal plants and/or plant-derived compounds. Plant extracts and phytocompounds of various classes have been found effective against bacterial or fungal biofilms, with some compounds showing activity against both. Such compounds are expected to be effective against mixed biofilms. Interestingly, certain quorum-sensing inhibiting plant extracts or compounds can also inhibit biofilms made by bacteria such as Pseudomonas aeruginosa. The majority of the antibiofilm phytocompounds identified so far have been tested in vitro; however, only a few compounds have been reported effective under in vivo condition. This could be due to the lack of access of the investigators to suitable animal models for different diseases to assess the therapeutic efficacy of these antibiofilm agents. The results of this chapter indicated that the phytocompounds may be effective alone or in combination with antibiotics, as in the treatment of systemic infection. However, further investigation on their mode of action and in vivo efficacy are prerequisites to obtain broad-spectrum antifungal agents of clinical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adonizio A, Kong KF, Mathee K (2008) Inhibition of quorum sensing controlled virulence factor production in Pseudomonas aeruginosa by south Florida plant extracts. Antimicrob Agents Chemother 52:198–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal V, Lal P, Pruthi V (2008) Prevention of Candida albicans biofilm by plant oils. Mycopathologia 165(1):13–19

    CAS  PubMed  Google Scholar 

  • Ahmad I, Aqil F (2007) In vitro efficacy of bioactive extracts of 15 medicinal plants against ESβL-producing multidrug-resistant enteric bacteria. Microbiol Res 162(3):264–275

    PubMed  Google Scholar 

  • Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74(2):113–123

    CAS  PubMed  Google Scholar 

  • Ahmad I, Aqil F, Ahmad F, Owais M (2006) Herbal medicines: prospects and constraints. In: Ahmad I, Aqil F, Owais M (eds) Modern phytomedicine: turning medicinal plants into drugs. Wiley-Blackwell, Germany, pp 59–78

    Google Scholar 

  • Ahmad I, Zahin M, Aqil F, Khan MSA, Ahmad S (2009) Novel approaches to combating drug-resistant bacteria. In: Ahmad I, Aqil F (eds) New strategies combating bacterial infections. Wiley-Blackwell, Germany, pp 47–70

    Google Scholar 

  • Al-Bakri AG, Othman G, Afifi FU (2010) Determination of the antibiofilm, anti-adhesive, and anti-MRSA activities of seven Salvia species. Pharmacogn Mag 6:264–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Shuneigat J, Cox SD, Markham JL (2005) Effects of a topical essential oil-containing formulation on bio-film-forming coagulase-negative Staphylococci. Lett Appl Microbiol 41:52–55

    CAS  PubMed  Google Scholar 

  • Al-Sohaibani S, Murugan K (2012) Anti-biofilm activity of Salvadora persica on cariogenic isolates of Streptococcus mutans: in vitro and molecular docking studies. Biofouling 28:29–38

    CAS  PubMed  Google Scholar 

  • Amaya S, Pereira JA, Borkosky SA, Valdez JC, Bardón A, Arena ME (2012) Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine 19(13):1173–1177

    CAS  PubMed  Google Scholar 

  • Artini M, Papa R, Barbato G, Scoarughi GL, Cellini A, Morazzoni P, Bombardelli E, Selan L (2012) Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bioorg Med Chem 20:920–926

    CAS  PubMed  Google Scholar 

  • Athamna A, Athamna M, Nura A, Shlyakov E, Bast DJ, Farrell D, Rubinstein E (2005) Is in vitro antibiotic combination more effective than single-drug therapy against anthrax? Antimicrob Agents Chemother 49:1323–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Jensen P, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Iby NH, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    CAS  PubMed  Google Scholar 

  • Borges A, Saavedra MJ, Simões M (2012) The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28(7):755–767

    CAS  PubMed  Google Scholar 

  • Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, Coenye T (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8:149

    PubMed  PubMed Central  Google Scholar 

  • Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T (2009) Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res Microbiol 160:144–151

    CAS  PubMed  Google Scholar 

  • Brandenburg KS, Rodriguez KJ, Michael JF, Schurr J, McAnulty CJC, Murphy CJ, Abbott NL (2013) Trytophan inhibits biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(4):1921–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7(6):e38492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caraher E, Reynolds G, Murphy P, McClean S, Callaghan M (2007) Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. Eur J Clin Microbiol Infect Dis 26:213–221

    CAS  PubMed  Google Scholar 

  • Carneiro VA, Dos Santos HS, Arruda FVS, Bandeira PN, Albuquerque MRJR, Pereira MO, Henriques M, Cavada BS, Teixeira EH (2011) Casbane diterpene as a promising natural antimicrobial agent against biofilm-associated infections. Molecules 16(1):190–201

    CAS  Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HS, Lee J, Ryu SY, Joo SW, Cho MH, Lee J (2013) Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-Viniferin. J Agric Food Chem 61(29):7120–7126

    CAS  PubMed  Google Scholar 

  • Chorianopoulos NG, Giaouris FD, Skendamis PN, Haroutounian SA, Nychas GJE (2008) Disinfectant test against monoculture andmixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid–base sanitizers. J Appl Microbiol 104:1586–1596

    CAS  PubMed  Google Scholar 

  • Coenye T, Brackman G, Rigole P, Witte ED, Honraet K, Rossel B, Nelis HJ (2012) Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 19:409–412

    CAS  PubMed  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronicbacterial infections. J Clin Invest 112:1466–1477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Villalón G, Pérez-Giraldo C (2011) Effect of allicin on the production of polysaccharide intercellular adhesin in Staphylococcus epidermidis. J Appl Microbiol 110:723–728

    PubMed  Google Scholar 

  • Daglia M, Stauder M, Papetti A, Signoretto C, Giusto G, Canepari P, Pruzzo C, Gazzani G (2010) Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans. Food Chem 119:1182–1188

    CAS  Google Scholar 

  • Dalleau S, Cateau E, Bergès T, Berjeaud JM, Imbert C (2008) In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents 31(6):572–576

    CAS  PubMed  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    CAS  PubMed  Google Scholar 

  • De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873

    PubMed  PubMed Central  Google Scholar 

  • De Prijck K, De Smet N, Coenye T, Schacht E, Nelis HJ (2010) Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. Mycopathologia 170(4):213–221

    CAS  PubMed  Google Scholar 

  • Durig A, Kouskoumvekaki I, Vejborg RM, Klemm P (2010) Chemoinformatics-assisted development of new anti-biofilm compounds. Appl Microbiol Biotechnol 87:309–317

    PubMed  Google Scholar 

  • Evensen NA, Braun PC (2009) The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55:1033–1039

    CAS  PubMed  Google Scholar 

  • Gibbons S (2005) Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem Rev 4:63–78

    CAS  Google Scholar 

  • Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Jayaprakasha GK, Pillai SD, Patil BS (2008) Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol 125(2):204–208

    CAS  PubMed  Google Scholar 

  • Hancock V, Dahl M, Vejborg RM, Klemm P (2010) Dietary plant components ellagic acid and tannic acid inhibit Escherichia coli biofilm formation. J Med Microbiol 59(4):496–498

    CAS  PubMed  Google Scholar 

  • Harborne JB, Baxter H, Moss GP (1999) Phytochemical dictionary: a handbook of bioactive compounds from plants. Taylor and Francis, London

    Google Scholar 

  • Harjai K, Kumar R, Singh S (2010) Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 58:161–168

    CAS  PubMed  Google Scholar 

  • Hasan S, Danishuddin M, Adil M, Singh K, Verma PK (2012) Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. PLoS One 7(7):e40319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendry ER, Worthington T, Conway BR, Lambert PA (2009) Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother 64(6):1219–1225

    CAS  PubMed  Google Scholar 

  • Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M (2005) A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66:2281–2291

    CAS  PubMed  Google Scholar 

  • Huber B, Eberl L, Feucht W, Polster J (2003) Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z Naturforsch C 58:879–884

    CAS  PubMed  Google Scholar 

  • Issac Abraham SV, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR (2011) Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 42:658–668

    PubMed  Google Scholar 

  • Issac Abraham SV, Palani A, Khadar Syed M, Shunmugiah KP, Arumugam VR (2012) Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int 45:85–92

    Google Scholar 

  • Jeon JG, Klein MI, Xiao J, Gregoire S, Rosalen PL, Koo H (2009) Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms. BMC Microbiol 9:228–237

    PubMed  PubMed Central  Google Scholar 

  • Jeong S, Kim B, Keum K, Lee K, Kang S, Park B, Lee Y, You Y (2013) Kaurenoic acid from Aralia continentalis inhibits biofilm formation of Streptococcus mutans. Evid Based Complement Alternat Med 160592:9

    Google Scholar 

  • Kavanaugh NL, Ribbeck K (2012) Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 78:4057–4061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MSA, Ahmad I (2012a) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67:618–621

    CAS  PubMed  Google Scholar 

  • Khan MSA, Ahmad I (2012b) Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J Ethnopharmacol 140:416–423

    CAS  PubMed  Google Scholar 

  • Khan MSA, Ahmad I (2013) Microscopy in mycological research with especial reference to ultrastructures and biofilm studies. In: Mendez-Vilas A (ed) Current microscopy contributions to advances in sciences and technology microscopy. FormatexSpain, Spain, pp 646–659

    Google Scholar 

  • Khan R, Adil M, Danishuddin M, Verma PK, Khan AU (2012) In vitro and in vivo inhibition of Streptococcus mutans biofilm by Trachyspermum ammi seeds: an approach of alternative medicine. Phytomedicine 19(8–9):747–755

    PubMed  Google Scholar 

  • Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, Ghiselli R, Saba V, Orlando F, Shoham M, Balaban N (2008) Discovery of a quorum-sensing inhibitor of drug-resistant Staphylococcal infections by structure-based virtual screening. Mol Pharmacol 73:1578–1586

    CAS  PubMed  Google Scholar 

  • Kumar L, Chibber S, Harjai K (2013) Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 90:73–78, http://dx.doi.org/10.1016/j.fitote.2013.06.017

    CAS  PubMed  Google Scholar 

  • Lee JH, Lee JS, Chung MS, Kim KH (2004) In vitro anti-adhesive activity of an acidic polysaccharide from Panax ginseng on Porphyromonas gingivalis binding to erythrocytes. Planta Med 70:566–568

    CAS  PubMed  Google Scholar 

  • Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH (2006) Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria. Carbohydr Res 341:1154–1163

    CAS  PubMed  Google Scholar 

  • Lee JH, Shim JS, Chung MS, Lim ST, Kim KH (2009) In vitro anti-adhesive activity of green tea extract against pathogen adhesion. Phytother Res 23:460–466

    CAS  PubMed  Google Scholar 

  • Lee JH, Cho MH, Lee J (2011a) Indole production promotes Escherichia coli mixed culture growth with Pseudomonas aeruginosa by inhibiting quorum signalling. Environ Microbiol 13:62–73

    CAS  PubMed  Google Scholar 

  • Lee KH, Kim BS, Keum KS, Yu HH, Kim YH, Chang BS, Ra JY, Moon HD, Seo BR, Choi NY, You YO (2011b) Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation. J Food Sci 76:H226–H230

    CAS  PubMed  Google Scholar 

  • Lengsfeld C, Titgemeyer F, Faller G, Hensel A (2004) Glycosylated compounds from okra inhibit adhesion of Helicobacter pylori to human gastric mucosa. J Agric Food Chem 52:1495–1503

    CAS  PubMed  Google Scholar 

  • Martins CV, de Resende MA, da Silva DL (2009) In vitro studies of anticandidal activity of goniothalamin enantiomers. J Appl Microbiol 107(4):1279–1286

    CAS  PubMed  Google Scholar 

  • Murugan K, Selvanayaki K, Al-Sohaibani S (2011) Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolate. Pseudomonas aeruginosa. World J Microbiol Biotechnol 27:1661–1668

    CAS  Google Scholar 

  • Murugan K, Sekar K, Sangeetha S, Ranjitha S, Sohaibani SA (2013) Antibiofilm and quorum sensing inhibitory activity of Achyranthes aspera on cariogenic Streptococcus mutans: an in vitro and in silico study. Pharm Biol 51:728–736

    CAS  PubMed  Google Scholar 

  • Musthafa KS, Ravi AV, Annapoorani A, Packiavathy ISV, Pandian SK (2010) Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy 56:333–339

    CAS  PubMed  Google Scholar 

  • Packiavathy IASV, Priya S, Pandian SK, Ravi AV (2012) Inhibition of biofilm development of uropathogens by curcumin—an anti-quorum sensing agent from Curcuma longa. Food Chem 148:453–460, http://dx.doi.org/10.1016/j.foodchem.2012.08.002

    PubMed  Google Scholar 

  • Ponnusamy K, Paul D, Kweon JH (2009) Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environ Eng Sci 26:1359–1363

    CAS  Google Scholar 

  • Quave CL, Estévez-Carmona M, Compadre CM, Hobby G, Hendrickson H, Beenken KE, Smeltzer MS (2012) Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One 7:e28737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raja AF, Ali F, Khan IA, Shawl AS, Arora DS, Shah BA, Taneja SC (2011) Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Microbiol 11:54–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9:117–128

    CAS  PubMed  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandiran V, Shanmugam K, Anupama K, Thomas S, Princy A (2012) Structure-based virtual screening for plant-derived SdiA-selective ligands as potential antivirulent agents against uropathogenic Escherichia coli. Eur J Med Chem 48:200–205

    CAS  PubMed  Google Scholar 

  • Ren D, Zuo R, González Barrios AF, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK (2005) Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 71(7):4022–4034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezanska T, Cejkova A, Masak J (2012) Natural products: strategic tools for modulation of biofilm formation. In: Atta-ur-Rahman FRS (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 269–303

    Google Scholar 

  • Rodas-Suárez OR, Flores-Pedroche JF, Betancourt-Rule JM, Quiñones-Ramírez EI, Vázquez-Salinas C (2006) Occurrence and antibiotic sensitivity of Listeria monocytogenes strains isolated from oysters, fish, and estuarine water. Appl Environ Microbiol 72:7410–7412

    PubMed  PubMed Central  Google Scholar 

  • Rogers SA, Huigens RW, Cavanagh J, Melander C (2010) Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. J Antimicrob Chemother 54:2112–2118

    CAS  Google Scholar 

  • Roman S, Ines J, Stefanie W, Alexander T (2013) New approaches to control infections: anti-biofilm strategies against gram-negative bacteria. Chimia Int J Chem 67:286–290

    Google Scholar 

  • Rukayadi Y, Han S, Yong D, Hwang JK (2011) In vitro activity of xanthorrhizol against Candida glabrata, C. guilliermondii, and C. parapsilosis biofilms. Med Mycol 49:1–9

    CAS  PubMed  Google Scholar 

  • Sandasi M, Leonard CM, Viljoen AM (2010) The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol 50:30–35

    CAS  PubMed  Google Scholar 

  • Sandasi M, Leonard CM, Van Vuuren SF, Viljoen AM (2011) Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. South Afr J Bot 77(1):6

    Google Scholar 

  • Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8(1):e53441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savoia D (2012) Plant-derived antimicrobials compounds: alternatives to antibiotics. Future Microbiol 7(8):979–990

    CAS  PubMed  Google Scholar 

  • Shuford JA, Steckelberg JM, Patel R (2005) Effects of fresh garlic extract on Candida albicans biofilms. Antimicrob Agents Chemother 49(1):473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BN, Singh HB, Singh A, Singh BR, Mishra A, Nautiyal CS (2012) Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology 158(2):529–538

    CAS  PubMed  Google Scholar 

  • Soumya EA, Houari A, Hassan L, Remmal A, Koraichi SI (2011a) In vitro activity of four common essential oil components against biofilm-producing Pseudomonas aeruginosa. Res J Microbiol 6:394–401

    Google Scholar 

  • Soumya EA, Koraichi SI, Hassan L, Ghizlane Z, Hind M, Remmal A (2011b) Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr J Microbiol Res 5:3229–3232

    CAS  Google Scholar 

  • Taganna JC, Quanico JP, Perono RMG, Amor EC, Rivera WL (2011) Tannin–rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. J Ethnopharmacol 134:865–871

    CAS  PubMed  Google Scholar 

  • Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J (2013) Innovative strategies to overcome biofilm resistance. Biomed Res Int 2013:150653, http://dx.doi.org/10.1155/2013/150653

    PubMed  PubMed Central  Google Scholar 

  • Taweechaisupapong S, Singhara S, Lertsatitthanakorn P, Khunkitti W (2010) Antimicrobial effects of Boesenbergia pandurata and Pipersarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. Pak J Pharm Sci 23(2):224–231

    CAS  PubMed  Google Scholar 

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:S3–S10

    CAS  PubMed  Google Scholar 

  • Thaweboon S, Thaweboon B (2009) In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. Southeast Asian J Trop Med Public Health 40(5):1025–1033

    PubMed  Google Scholar 

  • Trentin DS, Giordani RB, Zimmer KR, da Silva AG, da Silva MV, Correia MT, Baumvol IJ, Macedo AJ (2011) Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol 137:327–335

    Google Scholar 

  • Tsang PW-K, Bandara HMHN, Fong W-P (2012) Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS One 7(11):e50866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K (2013) Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol 36(1):79–89, http://dx.doi.org/10.1016/j.fm.2013.04.010

    CAS  PubMed  Google Scholar 

  • Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, Jaziri ME, Baucher M (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 71:243–253

    Google Scholar 

  • Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell–cell signaling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527

    CAS  PubMed  Google Scholar 

  • Villa F, Cappitelli F (2013) Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12:245–254

    CAS  Google Scholar 

  • Villa F, Borgonovo G, Cappitelli F, Giussani B, Bassoli A (2012) Sub-lethal concentrations of Muscari comosum bulb extract suppress adhesion and induce detachment of sessile yeast cells. Biofouling 28:1107–1117

    PubMed  Google Scholar 

  • Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A (2007) Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 59:777–786

    CAS  PubMed  Google Scholar 

  • Wittschier N, Faller G, Hensel A (2009) Aqueous extracts and polysaccharides from liquorice roots (Glycyrrhizaglabra L.) inhibit adhesion of Helicobacter pylori to human gastric mucosa. J Ethnopharmacol 125:218–223

    CAS  PubMed  Google Scholar 

  • Xie CF, Lou HX (2008) Chemical constituents from the Chinese bryophytes and their reversal of fungal resistance. Curr Org Chem 12(8):619–628

    CAS  Google Scholar 

  • Xu C, Ruan XM, Li HS, Guo BX, Ren XD, Shuang JL, Zhang Z (2010) Anti-adhesive effect of an acidic polysaccharide from Aloe vera L. var. chinensis (Haw.) Berger on the binding of Helicobacter pylori to the MKN-45 cell line. J Pharm Pharmacol 62:1753–1759

    CAS  PubMed  Google Scholar 

  • Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X, Shen Y, Zhou S (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 79:119–126

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

FMH is grateful to the Department of Science and Technology (DST), New Delhi, India, for the financial assistance in the form of an INSPIRE fellowship. The authors are also thankful to Mr. Mohammad Shavez Khan (Research Scholar, AMU, Aligarh) for his kind help in the preparation of structures of phytocompounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahmad, I., Husain, F.M., Maheshwari, M., Zahin, M. (2014). Medicinal Plants and Phytocompounds: A Potential Source of Novel Antibiofilm Agents. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_10

Download citation

Publish with us

Policies and ethics