Skip to main content

Evolution of Complexity and Neural Topologies

  • Chapter
Guided Self-Organization: Inception

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 9))

Abstract

One of the grandest and most intriguing self-organizing systems is nature itself. Whether couched in terms of evolutionary theory (Darwin 1859), information theory (Avery 2003), or thermodynamics and maximum physical entropy (Jaynes 1957a,b; Swenson 1989) natural processes have yielded a remarkable diversity of behavioral and organizational levels of complexity ranging from microbes to man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami, C.: What is complexity? BioEssays 24, 1085–1094 (2002)

    Article  Google Scholar 

  • Adami, C., Ofria, C., Collier, T.: Evolution of biological complexity. PNAS 97(9), 4463–4468 (2000)

    Article  Google Scholar 

  • Arthur, B.: On the evolution of complexity. In: Cowan, G.A., et al. (eds.) Complexity: Metaphors, Models, and Reality, pp. 65–81. Addison-Wesley, Reading (1994)

    Google Scholar 

  • Avery, J.: Information Theory and Evolution. World Scientific Publishing Company (2003)

    Google Scholar 

  • Ay, N., Olbrich, E., Bertschinger, N., Jost, J.: A unifying framework for complexity measures of finite systems, Working Paper 06-08-028. In: Proceedings of ECCS 2006, Oxford, UK, pp. 6–8 (2006)

    Google Scholar 

  • Bedau, M., Snyder, E., Brown, C., Packard, N.: A Comparison of Evolutionary Activity in Artificial Evolving Systems and in the Biosphere. In: Husbands, P., Harvey, I. (eds.) Proceedings of the Fourth European Conference on Artificial Life, pp. 125–134. MIT Press, Cambridge (1997)

    Google Scholar 

  • Bonner, J.: The Evolution of Complexity by Means of Natural Selection. Princeton Univ. Press, Princeton (1988)

    Google Scholar 

  • Bullmore, E., Sporns, O.: Complex brain networks: graph-theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10, 186–198 (2009)

    Article  Google Scholar 

  • Carroll, S.: Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 1102–1109 (2001)

    Article  Google Scholar 

  • Chaitin, G.J.: Toward a mathematical definition of “life”. In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism, pp. 477–498. MIT Press (1979)

    Google Scholar 

  • Channon, A.: Passing the ALife test: Activity statistics classify evolution in Geb as unbounded. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 417–426. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  • Cope, E.D.: The method of creation of organic forms. Proc. Am. Phil. Soc. 12, 229–263 (1871)

    Google Scholar 

  • Crutchfield, J.P., Feldman, D.P.: Regularities unseen, randomness observed: Levels of entropy convergence. Chaos 13(1), 25–54 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)

    Google Scholar 

  • Darwin, C.: The Descent of Man, and Selection in Relation to Sex. Princeton Univ. Press, Princeton (1871)

    Google Scholar 

  • Dawkins, R.: Human Chauvinism (a review of Gould’s Full House). Evolution 51(3), 1015–1020 (1997)

    Article  Google Scholar 

  • Der, R., Güttler, F., Ay, N.: Predictive information and emergent cooperativity in a chain of mobile robots. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 166–172. MIT Press, Cambridge (2008)

    Google Scholar 

  • Der, R., Steinmetz, U., Pasemann, F.: Homeokinesis–a new principle to back up evolution with learning. Computational Intelligence for Modelling, Control, and Automation in Concurrent Systems Engineering Series 55, 43–47 (1999)

    Google Scholar 

  • Der, R., Steinmetz, U., Pasemann, F.: Self-organized acquisition of situated behavior. Theory in Biosciences 120, 179–187 (2001)

    Google Scholar 

  • Farmer, J.D., Griffith, V.: On the viability of self-reproducing machines (2007) (unpublished)

    Google Scholar 

  • Fornito, A., Zalesky, A., Bassett, D.S., Meunier, D., Ellison-Wright, I., Yücel, M., Wood, S.J., Shaw, K., O’Connor, J., Nertney, D., Mowry, B.J., Pantelis, C., Bullmore, E.T.: Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks. The Journal of Neuroscience 31(9), 3261–3270 (2011)

    Article  Google Scholar 

  • Fretwell, S.D.: Populations in a seasonal environment. Princeton Univ. Press, Princeton (1972)

    Google Scholar 

  • Fretwell, S.D., Lucas, H.L.: On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19, 16–36 (1970)

    Article  Google Scholar 

  • Gould, S.J.: Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York (1989)

    Google Scholar 

  • Gould, S.J.: The evolution of life on earth. Scientific American 271(4), 62–69 (1994)

    Article  Google Scholar 

  • Gould, S.J.: Full House. Harmony Books, New York (1996)

    Google Scholar 

  • Grassberger, P.: Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25(9), 907–938 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Griffith, V., Yaeger, L.S.: Ideal Free Distribution in Agents with Evolved Neural Architectures. In: Rocha, L., Yaeger, L.S., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A. (eds.) Artificial Life X: Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems, pp. 372–378. MIT Press (Bradford Books), Cambridge (2006)

    Google Scholar 

  • Han, T.S.: Nonnegative entropy measures of multivariate symmetric correlations. Information and Control 36, 133–156 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Heylighen, F.: Evolutionary Transitions: How do levels of complexity emerge (2000), http://citeseer.ist.psu.edu/375313.html

  • Humphries, M.D., Gurney, K., Prescott, T.J.: The brainstem reticular formation is a small-world, not scale-free, network. Proc. R. Soc. B 273, 503–511 (2006)

    Article  Google Scholar 

  • Huynen, M.A.: Exploring phenotype space through neutral evolution. Journal of Molecular Evolution 43(3), 165–169 (1996)

    Article  Google Scholar 

  • Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14, 1569–1572 (2003)

    Article  Google Scholar 

  • Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15, 1063–1070 (2004)

    Article  Google Scholar 

  • Jaynes, E.T.: Information Theory and Statistical Mechanics. Physical Review 106, 620–630 (1957a)

    Article  MATH  MathSciNet  Google Scholar 

  • Jaynes, E.T.: Information Theory and Statistical Mechanics, II. Physical Review 108, 171–190 (1957b)

    Article  MathSciNet  Google Scholar 

  • Katz, M.J.: Is evolution random? In: Raff, R.A., Raff, E.C. (eds.) Development as an Evolutionary Process, pp. 285–315. Alan R. Liss, New York (1987)

    Google Scholar 

  • Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  • Klyubin, A., Polani, D., Nehaniv, C.: All else being equal be empowered. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 744–753. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Knoll, A., Bambach, R.K.: Directionality in the History of Life: Diffusion from the Left Wall or Repeated Scaling of the Right? Paleobiology 26(4) (supplement), 1–14 (2000)

    Google Scholar 

  • Lago-Fernández, L.F., Huerta, R., Corbacho, F., Sigüenza, J.A.: Fast Response and Temporal Coherent Oscillations in Small-World Networks. Phys. Rev. Lett. 84, 2758–2761 (2000)

    Article  Google Scholar 

  • Latora, V., Marchiori, M.: Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  • Latora, V., Marchiori, M.: Economic Small-World Behavior in Weighted Networks. Europ. Phys. Journ. B 32, 249–263 (2003)

    Article  Google Scholar 

  • Lizier, J.T., Piraveenan, M., Pradhana, D., Prokopenko, M., Yaeger, L.S.: Functional and Structural Topologies in Evolved Neural Networks. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part I. LNCS, vol. 5777, pp. 140–147. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  • Lungarella, M., Pegors, T., Bulwinkle, D., Sporns, O.: Methods for quantifying the information structure of sensory and motor data. Neuroinformatics 3(3), 243–262 (2005)

    Article  Google Scholar 

  • Maynard Smith, J.: Time in the evolutionary process. Studium Generale 23, 266–272 (1970)

    Google Scholar 

  • McShea, D.W.: Evolutionary Change in the Morphological Complexity of the Mammalian Vertebral Column. Evolution 47(3), 730–740 (1993)

    Article  Google Scholar 

  • McShea, D.W.: Mechanisms of large-scale evolutionary trends. Evolution 48, 1747–1763 (1994)

    Article  Google Scholar 

  • McShea, D.W.: Metazoan complexity and evolution: Is there a trend? Evolution 50, 477–492 (1996)

    Article  Google Scholar 

  • McShea, D.W.: The minor transitions in hierarchical evolution and the question of a directional bias. J. Evol. Biol. 14, 502–518 (2001)

    Article  Google Scholar 

  • McShea, D.W.: The evolution of complexity without natural selection, a possible large-scale trend of the fourth kind. Paleobiology 31(2) (supplement), 146–156 (2005)

    Google Scholar 

  • McShea, D.W., Brandon, R.N.: Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems. The University of Chicago Press (2010)

    Google Scholar 

  • Mitchison, G.: Neuronal branching patterns and the economy of cortical wiring. Proceedings of the Royal Society of London. Series B: Biological Sciences 245(1313), 151–158 (1991)

    Article  Google Scholar 

  • Murdock, J., Yaeger, L.S.: Genetic clustering for the identification of species. In: Krasnogor, N., Lanzi, P.L., Engelbrecht, A., Pelta, D., Gershenson, C., Squillero, G., Freitas, A., Ritchie, M., Preuss, M., Gagne, C., Ong, Y.S., Raidl, G., Gallager, M., Lozano, J., Coello-Coello, C., Silva, D.L., Hansen, N., Meyer-Nieberg, S., Smith, J., Eiben, G., Bernado-Mansilla, E., Browne, W., Spector, L., Yu, T., Clune, J., Hornby, G., Wong, M.-L., Collet, P., Gustafson, S., Watson, J.-P., Sipper, M., Poulding, S., Ochoa, G., Schoenauer, M., Witt, C., Auger, A. (eds.) GECCO 2011: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 29–30. ACM, Dublin (2011a)

    Chapter  Google Scholar 

  • Murdock, J., Yaeger, L.S.: Identifying species by genetic clustering. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., Doursat, R. (eds.) Advances in Artificial Life: Proceedings of the Eleventh European Conference on Artificial Life (ECAL 2011), pp. 565–572. MIT Press, Paris (2011b)

    Google Scholar 

  • Murre, J.M.J., Engelhardt, D.P.F.: The connectivity of the brain: multi-level quantitative analysis. Biological Cybernetics 73, 529–545 (1995)

    Article  MATH  Google Scholar 

  • Newman, M.E.J., Engelhardt, R.: Effects of neutral selection on the evolution of molecular species. Proc. R. Soc. London B, 1333–1338 (1998)

    Google Scholar 

  • Raup, D.M., Gould, S.J.: Stochastic Simulation and Evolution of Morphology–Towards a Nomothetic Paleontology. Systematic Zoology 23(3), 305–322 (1974)

    Article  Google Scholar 

  • Raup, D.M., Gould, S.J., Schopf, T.J.M., Simberloff, D.S.: Stochastic Models of Phylogeny and the Evolution of Diversity. Journal of Geology 81, 525–542 (1973)

    Article  Google Scholar 

  • Rechsteiner, A., Bedau, M.A.: A Generic Neutral Model for Quantitative Comparison of Genotypic Evolutionary Activity. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 109–118. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Rensch, B.: Evolution above the species level. Columbia Univ. Press, New York (1960a)

    Google Scholar 

  • Rensch, B.: The laws of evolution. In: Tax, S. (ed.) The Evolution of Life, pp. 95–116. Univ. of Chicago Press, Chicago (1960b)

    Google Scholar 

  • Saunders, P.T., Ho, M.W.: On the increase in complexity in evolution. J. Theor. Biol. 63, 375–384 (1976)

    Article  Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Google Scholar 

  • Sporns, O., Lungarella, M.: Evolving coordinated behavior by maximizing information structure. In: Rocha, L. (ed.) Artificial Life X: Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems, pp. 323–329. MIT Press (Bradford Books), Cambridge (2006)

    Google Scholar 

  • Sporns, O., Tononi, G., Edelman, G.: Theoretical Neuroanatomy: Relating Anatomical and Functional Connectivity in Graphs and Cortical Connection Matrices. Cerebral Cortex 10, 127–141 (2000)

    Article  Google Scholar 

  • Swenson, R.: Emergent attractors and the law of maximum entropy production: Foundations to a theory of general evolution. Systems Research 6(3), 187–197 (1989)

    Article  Google Scholar 

  • Thomas, R.D.K., Reif, W.-E.: The Skeleton Space: A Finite Set of Organic Designs. Evolution 47(2), 341–360 (1993)

    Article  Google Scholar 

  • Tononi, G., Edelman, G., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends in Cognitive Sciences 2(12), 474–484 (1998)

    Article  Google Scholar 

  • Tononi, G., Sporns, O., Edelman, G.: A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91, 5033–5037 (1994)

    Article  Google Scholar 

  • Turney, P.: Increasing Evolvability Considered as a Large-Scale Trend in Evolution. In: Wu, A. (ed.) Proceedings of the Workshop on Evolvability at the 1999 Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 43–46 (1999)

    Google Scholar 

  • Turney, P.: A simple model of unbounded evolutionary versatility as a largest-scale trend in organismal evolution. Artificial Life 6, 109–128 (2000)

    Article  Google Scholar 

  • Valentine, J.W., Collins, A.G., Meyer, C.P.: Morphological complexity increase in metazoans. Paleobiology 20(2), 131–142 (1994)

    Google Scholar 

  • Waddington, C.H.: Paradigm for an evolutionary process. In: Waddington, C.H. (ed.) Towards a Theoretical Biology, Aldine, Chicago, vol. 2, pp. 106–128 (1969)

    Google Scholar 

  • Wagner, P.J.: Contrasting the Underlying Patterns of Active Trends in Morphologic Evolution Evolution. Evolution 50(3), 990–1007 (1996)

    Article  Google Scholar 

  • Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  • Yaeger, L.S.: Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision, and Behavior or Polyworld: Life in a New Context. In: Langton, C.G. (ed.) Proceedings of the Artificial Life III Conference, pp. 263–298. Addison-Wesley, Reading (1994)

    Google Scholar 

  • Yaeger, L.S.: How evolution guides complexity. HFSP 3(5), 328–339 (2009)

    Article  Google Scholar 

  • Yaeger, L.S.: Identifying neural network topologies that foster dynamical complexity. Advances in Complex Systems 16(02n03), 1350032 (2013)

    Article  Google Scholar 

  • Yaeger, L.S., Griffith, V., Sporns, O.: Passive and Driven Trends in the Evolution of Complexity. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 725–732. MIT Press, Cambridge (2008)

    Google Scholar 

  • Yaeger, L.S., Sporns, O.: Evolution of Neural Structure and Complexity in a Computational Ecology. In: Rocha, L., Yaeger, L.S., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A. (eds.) Artificial Life X: Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems, pp. 330–336. MIT Press (Bradford Books), Cambridge (2006)

    Google Scholar 

  • Yaeger, L.S., Sporns, O., Williams, S., Shuai, X., Dougherty, S.: Evolutionary Selection of Network Structure and Function. In: Fellerman, H., Dörr, M., Hanczyc, M.M., Laursen, L.L., Maurer, S., Merkle, D., Monnard, P.-A., Støy, K., Rasmussen, S. (eds.) Artificial Life XII: Proceedings of the Twelfth International Conference on the Simulation and Synthesis of Living Systems, pp. 313–320. MIT Press, Cambridge (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yaeger, L.S. (2014). Evolution of Complexity and Neural Topologies. In: Prokopenko, M. (eds) Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53734-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53733-2

  • Online ISBN: 978-3-642-53734-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics