Skip to main content

Guiding Designs of Self-Organizing Swarms: Interactive and Automated Approaches

  • Chapter
Guided Self-Organization: Inception

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 9))

Abstract

Engineering design has traditionally been a top-down process in which a designer shapes, arranges and combines various components in a specific, precise, hierarchical manner, to create an artifact that will behave deterministically in an intended way (Minai et al. 2006; Pahl et al. 2007). However, this process does not apply to complex systems that show self-organization, adaptation and emergence. Complex systems consist of a massive amount of simpler components that are coupled locally and loosely, whose behaviors at macroscopic scales emerge partially stochastically in a bottom-up way. Such emergent properties of complex systems are often very robust and dynamically adaptive to the surrounding environment, indicating that complex systems bear great potential for engineering applications (Ottino 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, C.: Creation of desirable complexity: strategies for designing selforganized systems. In: Complex Engineered Systems, pp. 101–121. Springer (2006)

    Google Scholar 

  • Banzhaf, W.: Interactive evolution. Evolutionary Computation 1, 228–236 (2000)

    Google Scholar 

  • Bar-Yam, Y.: Dynamics of complex systems. Westview Press (2003)

    Google Scholar 

  • Bedau, M.A., Brown, C.T.: Visualizing evolutionary activity of genotypes. Artificial Life 5(1), 17–35 (1999)

    Article  Google Scholar 

  • Bedau, M.A., Packard, N.H.: Measurement of evolutionary activity, teleology, and life. In: Artificial Life II, pp. 431–461. Addison-Wesley (1992)

    Google Scholar 

  • Bentley, P.: Evolutionary design by computers. Morgan Kaufmann (1999)

    Google Scholar 

  • Bentley, P.J., O’Reilly, U.-M.: Ten steps to make a perfect creative evolutionary design system. In: GECCO 2001 Workshop on Non-Routine Design with Evolutionary Systems (2001)

    Google Scholar 

  • Boccara, N.: Modeling complex systems. Springer (2010)

    Google Scholar 

  • Bush, B.J., Sayama, H.: Hyperinteractive evolutionary computation. IEEE Transactions on Evolutionary Computation 15(3), 424–433 (2011)

    Article  Google Scholar 

  • Camazine, S.: Self-organization in biological systems. Princeton University Press (2003)

    Google Scholar 

  • Cheng, J., Cheng, W., Nagpal, R.: Robust and self-repairing formation control for swarms of mobile agents. In: AAAI, vol. 5, pp. 59–64 (2005)

    Google Scholar 

  • Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  • Dawkins, R.: The blind watchmaker: Why the evidence of evolution reveals a universe without design. WW Norton & Company (1996)

    Google Scholar 

  • Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries – a review. Artificial Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  • Doursat, R., Sayama, H., Michel, O.: Morphogenetic engineering: Reconciling self-organization and architecture. In: Morphogenetic Engineering, pp. 1–24. Springer (2012)

    Google Scholar 

  • Hemelrijk, C.K., Kunz, H.: Density distribution and size sorting in fish schools: an individual-based model. Behavioral Ecology 16(1), 178–187 (2005)

    Article  Google Scholar 

  • Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  • Kunz, H., Hemelrijk, C.K.: Artificial fish schools: collective effects of school size, body size, and body form. Artificial Life 9(3), 237–253 (2003)

    Article  Google Scholar 

  • Minai, A.A., Braha, D., Bar-Yam, Y.: Complex engineered systems: A new paradigm. Springer (2006)

    Google Scholar 

  • Nehaniv, C.L.: Measuring evolvability as the rate of complexity increase. In: Artificial Life VII Workshop Proceedings, pp. 55–57 (2000)

    Google Scholar 

  • Newman, J.P., Sayama, H.: Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model. Physical Review E 78(1), 011913 (2008)

    Google Scholar 

  • Ottino, J.M.: Engineering complex systems. Nature 427(6973), 399–399 (2004)

    Article  Google Scholar 

  • Pahl, G., Wallace, K., Blessing, L.: Engineering design: a systematic approach, vol. 157. Springer (2007)

    Google Scholar 

  • Ray, T.S.: An approach to the synthesis of life. In: Artificial Life II, pp. 371–408. Addison-Wesley (1992)

    Google Scholar 

  • Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics 21(4), 25–34 (1987)

    Article  Google Scholar 

  • Salzberg, C., Antony, A., Sayama, H.: Evolutionary dynamics of cellular automata-based self-replicators in hostile environments. BioSystems 78(1), 119–134 (2004)

    Article  Google Scholar 

  • Salzberg, C., Sayama, H.: Complex genetic evolution of artificial self-replicators in cellular automata. Complexity 10(2), 33–39 (2004)

    Article  Google Scholar 

  • Sayama, H.: Decentralized control and interactive design methods for large-scale heterogeneous self-organizing swarms. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 675–684. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Sayama, H.: Swarm chemistry. Artificial Life 15(1), 105–114 (2009)

    Article  Google Scholar 

  • Sayama, H.: Robust morphogenesis of robotic swarms. IEEE Computational Intelligence Magazine 5(3), 43–49 (2010)

    Article  Google Scholar 

  • Sayama, H.: Swarm chemistry evolving. In: Artificial Life XII: Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems, pp. 32–33. MIT Press (2010b)

    Google Scholar 

  • Sayama, H.: Seeking open-ended evolution in swarm chemistry. In: 2011 IEEE Symposium on Artificial Life (ALIFE), pp. 186–193. IEEE (2011)

    Google Scholar 

  • Sayama, H.: Swarm-based morphogenetic artificial life. In: Morphogenetic Engineering, pp. 191–208. Springer (2012)

    Google Scholar 

  • Sayama, H., Dionne, S., Laramee, C., Wilson, D.S.: Enhancing the architecture of interactive evolutionary design for exploring heterogeneous particle swarm dynamics: An in-class experiment. In: IEEE Symposium on Artificial Life (ALife 2009), pp. 85–91. IEEE (2009)

    Google Scholar 

  • Sayama, H., Wong, C.: Quantifying evolutionary dynamics of swarm chemistry. In: Advances in Artificial Life, ECAL 2011: Proceedings of the Eleventh European Conference on Artificial Life, pp. 729–730 (2011)

    Google Scholar 

  • Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 5th edn. Prentice Hall (2009)

    Google Scholar 

  • Sole, R., Goodwin, B.: Signs of life: How complexity pervades biology. Basic books (2008)

    Google Scholar 

  • Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of ec optimization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296 (2001)

    Article  Google Scholar 

  • Unemi, T.: Simulated breeding–a framework of breeding artifacts on the computer. Kybernetes 32(1/2), 203–220 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Sayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sayama, H. (2014). Guiding Designs of Self-Organizing Swarms: Interactive and Automated Approaches. In: Prokopenko, M. (eds) Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53734-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53733-2

  • Online ISBN: 978-3-642-53734-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics