Skip to main content

Quorums Quicken Queries: Efficient Asynchronous Secure Multiparty Computation

  • Conference paper
Distributed Computing and Networking (ICDCN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8314))

Included in the following conference series:

Abstract

We describe an asynchronous algorithm to solve secure multiparty computation (MPC) over n players, when strictly less than a \({1}\over{8}\) fraction of the players are controlled by a static adversary. For any function f over a field that can be computed by a circuit with m gates, our algorithm requires each player to send a number of field elements and perform an amount of computation that is \(\tilde{O}(\frac{m}{n} + \sqrt n)\). This significantly improves over traditional algorithms, which require each player to both send a number of messages and perform computation that is Ω(nm).

Additionaly, we define the threshold counting problem and present a distributed algorithm to solve it in the asynchronous communication model. Our algorithm is load balanced, with computation, communication and latency complexity of O(logn), and may be of independent interest to other applications with a load balancing goal in mind.

Full version of this paper is available at http://cs.unm.edu/~movahedi/mpc.pdf .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M., Komlós, J., Szemerédi, E.: An 0(n log n) sorting network. In: Proceedings of STOC 1983, pp. 1–9. ACM, New York (1983)

    Google Scholar 

  2. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks and multi-processor coordination. In: Proceedings of STOC 1991, pp. 348–358. ACM (1991)

    Google Scholar 

  3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn., p. 14. John Wiley Interscience (March 2004)

    Google Scholar 

  4. Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: Proceedings of STOC 1993 (1993)

    Google Scholar 

  6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computing. In: Proceedings of STOC 1988, pp. 1–10 (1988)

    Google Scholar 

  7. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation: how to run sublinear algorithms in a distributed setting. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: Proceeding of STOC 1993, pp. 42–51 (1993)

    Google Scholar 

  10. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of STOC 1988, pp. 11–19 (1988)

    Google Scholar 

  11. Chor, B., Dwork, C.: Randomization in Byzantine agreement. Advances in Computing Research 5, 443–498 (1989)

    Google Scholar 

  12. Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty computation with nearly optimal work and resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Dani, V., King, V., Movahedi, M., Saia, J.: Breaking the o(nm) bit barrier: Secure multiparty computation with a static adversary. In: Proceedings of PODC 2012 (2012)

    Google Scholar 

  16. Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: Efficient asynchronous secure multiparty computation. Manuscript (2013)

    Google Scholar 

  17. Du, W., Atallah, M.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms, pp. 13–22. ACM (2001)

    Google Scholar 

  18. Frikken, K.: Secure multiparty computation. In: Algorithms and Theory of Computation Handbook, p. 14. Chapman & Hall/CRC (2010)

    Google Scholar 

  19. Goldreich, O.: Secure multi-party computation. Manuscript (1998)

    Google Scholar 

  20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of STOC 1987, pp. 218–229. ACM (1987)

    Google Scholar 

  21. Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Hirt, M., Nielsen, J.B.: Upper bounds on the communication complexity of optimally resilient cryptographic multiparty computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 79–99. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. King, V., Lonargan, S., Saia, J., Trehan, A.: Load balanced scalable byzantine agreement through quorum building, with full information. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Klugerman, M., Plaxton, C.G.: Small-depth counting networks. In: Proceedings of STOC 1992, pp. 417–428 (1992)

    Google Scholar 

  25. Klugerman, M.R.: Small-depth counting networks and related topics (1994)

    Google Scholar 

  26. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of STOC 1989, pp. 73–85. ACM (1989)

    Google Scholar 

  27. Yao, A.: Protocols for secure computations. In: Proceedings of FOCS 1982, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dani, V., King, V., Movahedi, M., Saia, J. (2014). Quorums Quicken Queries: Efficient Asynchronous Secure Multiparty Computation. In: Chatterjee, M., Cao, Jn., Kothapalli, K., Rajsbaum, S. (eds) Distributed Computing and Networking. ICDCN 2014. Lecture Notes in Computer Science, vol 8314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45249-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45249-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45248-2

  • Online ISBN: 978-3-642-45249-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics