Skip to main content

Electrical Conductivity and Morphology of Polyamide6/Acrylonitrile-Butadiene-Styrene Copolymer Blends with Multiwall Carbon Nanotubes: A Case Study

  • Chapter
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

The effect of multiwall carbon nanotubes (MWNTs) on the bulk electrical conductivity and phase morphology of melt-mixed blends of polyamide 6 (PA6)/acrylonitrile-butadiene-styrene copolymer (ABS) has been investigated in this work. The bulk electrical conductivity of the blends with MWNTs was strongly dependent on the selective localization of MWNTs in the PA6 phase of the blends. Further, the selective localization of MWNTs in the PA6 phase led to a significant change in the phase morphology. The dual phase continuity was broader over a much larger composition range in the presence of MWNTs. In order to facilitate 3D “network-like” structure of MWNTs in the blends, a unique reactive modifier has been utilized. Significant changes in both bulk electrical conductivity and phase morphology have been found in the presence of modified MWNTs in the blends. An attempt has been made to understand the varying electrical conductivity in these blends through the alteration of phase morphology along with “aggregated” versus “uniform” dispersion of MWNTs in unmodified and modified MWNTs-based blends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colaneri NF, Shacklette LW (1992) IEEE Trans Instrum Meas 41:291

    Article  Google Scholar 

  2. Narkis M, Lidor G, Vaxman A, Zuri L (2000) IEEE Trans Electr Pack Manuf 23:239

    Article  Google Scholar 

  3. Srivastava S, Tchoudakov R, Narkis M (2000) Polym Eng Sci 40:1522

    Article  Google Scholar 

  4. Wu M, Shaw LL (2005) Int J Hydrog Energy 30:373

    Article  Google Scholar 

  5. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Colloid Polym Sci 270:134

    Article  Google Scholar 

  6. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25:265

    Article  Google Scholar 

  7. Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour JR, Brouers OF, Teyssibt P (1996) Macromolecules 28:1559

    Article  ADS  Google Scholar 

  8. Khare R, Bhattacharyya AR, Kulkarni AR, Saroop M, Biswas A (2008) J Polym Sci B: Phys 46:2286

    Article  Google Scholar 

  9. Bose S, Bhattacharyya AR, Bondre A, Kulkarni AR, Pötschke P (2008) J Polym Sci Phys 46:1619

    Article  Google Scholar 

  10. Bose S, Bhattacharyya AR, Kodgire PV, Kulkarni AR, Misra A (2008) J Nanosci Nanotech 8:1867

    Article  Google Scholar 

  11. Bose S, Bhattacharyya AR, Kulkarni AR, Pötschke P (2008) Compos Sci Technol 69:365

    Article  Google Scholar 

  12. Kodgire PV, Bhattacharyya AR, Bose S, Gupta N, Kulkarni AR, Misra A (2006) Chem Phys Lett 432:480

    Article  ADS  Google Scholar 

  13. Jonscher AK (1977) Nature 267:673

    Article  ADS  Google Scholar 

  14. Krause B, Pötschke P, Häußler L (2009) Compos Sci Tech 69:1505

    Article  Google Scholar 

  15. Tambe PB, Bhattacharyya AR (2013) J Appl Polym Sci 127:1017

    Article  Google Scholar 

  16. Liptov YS (2002) Prog Polym Sci 27:1721

    Article  Google Scholar 

  17. Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Polymer 45:8403

    Article  Google Scholar 

  18. Majumadar B, Keskkula H, Paul DR (1994) Polymer 35:1386

    Article  Google Scholar 

  19. Gubbels F, Jérôme R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Chem Mater 10:1227

    Article  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge the financial support from the Department of Science & Technology (DST), India (Project No. 08DST016). The authors would also like to acknowledge “Microcompounder Central Facility” and SAIF IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suryasarathi Bose or Arup R. Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bose, S., Bhattacharyya, A.R., Khare, R.A., Kulkarni, A.R. (2015). Electrical Conductivity and Morphology of Polyamide6/Acrylonitrile-Butadiene-Styrene Copolymer Blends with Multiwall Carbon Nanotubes: A Case Study. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_78

Download citation

Publish with us

Policies and ethics