Skip to main content

Abstract

Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as high Young’s modulus and tensile strength, low density, and excellent electrical and thermal properties, which make them ideal fillers for polymer composites. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can be carried out in order to improve their processibility and dispersion within the composites. Homogeneous dispersion of CNTs in a polymer matrix plays a crucial role in the preparation of polymer composites based on interfacial interactions between CNTs and the polymer matrix. This chapter aims to review the surface modification of CNTs, the processing technology, and improvement of properties of CNT-reinforced polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    ADS  Google Scholar 

  2. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite. Science 265:1212

    ADS  Google Scholar 

  3. Hong J, Park DW, Shim SE (2010) A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett 11:347

    Google Scholar 

  4. Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712

    Google Scholar 

  5. Kim KS, Rhee KY, Lee KH, Byun JH, Park SJ (2010) Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites. J Ind Eng Chem 16:572

    Google Scholar 

  6. Zhang X, Zhang J, Wang R, Liu Z (2004) Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon 42:1455

    Google Scholar 

  7. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837

    Google Scholar 

  8. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357

    Google Scholar 

  9. Kim KS, Park SJ (2010) Influence of enhanced dispersity of chemically treated MWNTs on physical properties of MWNTs/PVDF films. Macromol Res 18:981

    Google Scholar 

  10. Guo P, Chen X, Gao X, Song H, Shen H (2007) Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Compos Sci Technol 67:3331

    Google Scholar 

  11. Liu L, Etika KC, Liao KS, Hess LA, Bergbreiter DE, Grunlan JC (2009) Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol Rapid Commun 30:627

    Google Scholar 

  12. Spitalsky Z, Krontiras CA, Georga SN, Galiotis C (2009) Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos Part A: Appl Sci Manuf 40:778

    Google Scholar 

  13. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos Part A: Appl Sci Manuf 34:689

    Google Scholar 

  14. Yang M, Gao Y, Li H, Adronov A (2007) Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon 45:2327

    Google Scholar 

  15. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300

    Google Scholar 

  16. Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049

    Google Scholar 

  17. Miyagawa H, Drzal LT (2004) Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer 45:5163

    Google Scholar 

  18. Kim KS, Park SJ (2010) Influence of surface treatment of multi-walled carbon nanotubes on interfacial interaction of nanocomposites. Carbon Lett 11:102

    Google Scholar 

  19. Jung HT, Cho Y, Kim T, Kim TA, Park M (2010) Preparation of amine-epoxy adducts(AEA)/thin multiwalled carbon nanotubes (TWCNTs) composite particles using dry processes. Carbon Lett 11:107

    Google Scholar 

  20. Lee YS, Im JS, Yun SM, Nho YC, Kang PH, Jin H (2009) X-ray photoelectron spectroscopic analysis of modified MWCNT and dynamic mechanical properties of e-beam cured epoxy resins with the MWCNT. Carbon Lett 10:314

    Google Scholar 

  21. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739

    Google Scholar 

  22. Gao J, Zhao B, Itkis ME, Bekyarova E, Hu H, Kranak V, Yu A, Haddon RC (2006) Chemical engineering of the single-walled carbon nanotube−nylon 6 interface. J Am Chem Soc 128:7492

    Google Scholar 

  23. Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879

    Google Scholar 

  24. Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) Continuous spinning of a single-walled carbon nanotube−nylon composite fiber. J Am Chem Soc 127:3847

    Google Scholar 

  25. Zhao C, Hu G, Justice R, Schaefer DW, Zhang S, Yang M, Han CC (2005) Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer 46:5125

    Google Scholar 

  26. Shao W, Wang Q, Wang F, Chen Y (2006) The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state. Carbon 44:2708

    Google Scholar 

  27. Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214

    ADS  Google Scholar 

  28. Zhang WD, Shen L, Phang IY, Liu T (2003) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256

    ADS  Google Scholar 

  29. Chae HG, Sreekumar TV, Uchida T, Kumar S (2005) A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer 46:10925

    Google Scholar 

  30. Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967

    Google Scholar 

  31. Chae HG, Minus ML, Kumar S (2006) Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer 47:3494

    Google Scholar 

  32. Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Morphology and properties of melt-spun polycarbonate fibers containing single-and multi-wall carbon nanotubes. Polymer 47:1704

    Google Scholar 

  33. Singh S, Pei Y, Miller R, Sundararajan PR (2003) Long-range, entangled carbon nanotube networks in polycarbonate. Adv Funct Mater 13:868

    Google Scholar 

  34. Kim KH, Jo WH (2009) A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47:1126

    Google Scholar 

  35. Zou Y, Feng Y, Wang L, Liu X (2004) Processing and properties of MWNT/HDPE composites. Carbon 42:271

    Google Scholar 

  36. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA, Simoes JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67:3071

    Google Scholar 

  37. Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41:2779

    Google Scholar 

  38. Xiao KQ, Zhang LC, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67:177

    Google Scholar 

  39. Tong X, Liu C, Cheng HM, Zhao H, Yang F, Zhang X (2004) Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler–Natta polymerization. J Appl Polym Sci 92:3697

    Google Scholar 

  40. Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: Morphology and physical properties. J Polym Sci Part B: Polym Phys 45:597

    ADS  Google Scholar 

  41. Bin Y, Kitanaka M, Zhu D, Matsuo M (2003) Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36:6213

    ADS  Google Scholar 

  42. Wang Y, Cheng R, Liang L, Wang Y (2005) Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Compos Sci Technol 65:793

    Google Scholar 

  43. Ruan SL, Gao P, Yang XG, Yu TX (2003) Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44:5643

    Google Scholar 

  44. Ruan S, Gao P, Yu TX (2006) Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47:1604

    Google Scholar 

  45. Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S (2004) Melt processing of SWCNT-polyimide nanocomposite fibers. Compos Part B Eng 35:439

    Google Scholar 

  46. Ogasawara T, Ishida Y, Ishikawa T, Yokota R (2004) Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos Part A Appl Sci Manuf 35:67

    Google Scholar 

  47. Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, Haddon RC (2006) Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Compos Sci Technol 66:1190

    Google Scholar 

  48. Liu T, Tong Y, Zhang WD (2007) Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Compos Sci Technol 67:406

    Google Scholar 

  49. Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66:548

    Google Scholar 

  50. So HH, Cho JW, Sahoo NG (2007) Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 43:3750

    Google Scholar 

  51. Yuen SM, Ma CCM, Lin YY, Kuan HC (2007) Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos Sci Technol 67:2564

    Google Scholar 

  52. Seo DW, Yoon WJ, Park SJ, Jo MC, Kim JS (2006) The preparation of multi-walled CNT-PMMA nanocomposite. Carbon Lett 7:266

    Google Scholar 

  53. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271:395

    Google Scholar 

  54. Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci Technol 62:1105

    Google Scholar 

  55. Kim KH, Jo WH (2008) Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate). Compos Sci Technol 68:2120

    Google Scholar 

  56. Sabba Y, Thomas EL (2004) High-concentration dispersion of single-wall carbon nanotubes. Macromolecules 37:4815

    ADS  Google Scholar 

  57. Bae DY, Lee HS (2010) Enhanced compatibility of PC/PMMA alloys by adding multiwall carbon nanotubes. Carbon Lett 11:83

    Google Scholar 

  58. Wang M, Pramoda KP, Goh SH (2006) Enhancement of interfacial adhesion and dynamic mechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotube composites with amine-terminated poly(ethylene oxide). Carbon 44:613

    Google Scholar 

  59. Velasco-Santos C, Martínez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470

    Google Scholar 

  60. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2003) Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24:1070

    Google Scholar 

  61. Manchado MAL, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43:1499

    Google Scholar 

  62. Kearns JC, Shambaugh RL (2002) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86:2079

    Google Scholar 

  63. Shen J, Champagne MF, Yang Z, Yu Q, Gendron R, Guo S (2012) The development of a conductive carbon nanotube (CNT) network in CNT/polypropylene composite films during biaxial stretching. Comp Part A: Appl Sci Manuf 43:1448

    Google Scholar 

  64. Daugaard AE, Jankova K, Marín JMR, Bøgelund J, Hvilsted S (2012) Poly(ethylene-co-butylene) functionalized multi walled carbon nanotubes applied in polypropylene nanocomposites. Eur Polym J 48:743

    Google Scholar 

  65. Zhao P, Wang K, Yang H, Zhang Q, Du R, Fu Q (2007) Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48:5688

    Google Scholar 

  66. Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B 106:5852

    Google Scholar 

  67. Shim YS, Park SJ (2010) Influence of glycidyl methacrylate grafted multi-walled carbon nanotubes on viscoelastic behaviors of polypropylene nanocomposites. Carbon Lett 11:311

    Google Scholar 

  68. Karevan M, Pucha RV, Bhuiyan MA, Kalaitzidou K (2010) Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett 11:325

    Google Scholar 

  69. Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84:2660

    Google Scholar 

  70. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287:395

    Google Scholar 

  71. Xie L, Xu F, Qiu F, Lu H, Yang Y (2007) Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40:3296

    ADS  Google Scholar 

  72. Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44:2701

    Google Scholar 

  73. Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Deformation-morphology correlations in electrically conductive carbon nanotube–thermoplastic polyurethane nanocomposites. Polymer 46:4405

    Google Scholar 

  74. Xu M, Zhang T, Gu B, Wu J, Chen Q (2006) Synthesis and properties of novel polyurethane-urea/multiwalled carbon nanotube composites. Macromolecules 39:3540

    ADS  Google Scholar 

  75. Fernández-d’Arlas B, Khan U, Rueda L, Martin L, Ramos JA, Coleman JN, González ML, Valea A, Mondragon I, Corcuera MA, Eceiza A (2012) Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Comp Sci Technol 72:235

    Google Scholar 

  76. Chen W, Tao X (2005) Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane. Macromol Rapid Commun 26:1763

    Google Scholar 

  77. Kim YJ, Jang YK, Kim WN, Park M, Kim JK, Yoon HG (2010) Electrical enhancement of polyurethane composites filled with multiwalled carbon nanotubes by controlling their dispersion and damage. Carbon Lett 11:96

    Google Scholar 

  78. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP (2004) Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon 42:2849

    Google Scholar 

  79. Ryan KP, Cadek M, Nicolosi V, Blond D, Ruether M, Armstrong G, Swan H, Fonseca A, Nagy JB, Maser WK, Blau WJ, Coleman JN (2007) Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). Compos Sci Technol 67:1640

    Google Scholar 

  80. Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, Smalley RE (2003) Poly(vinyl alcohol)/SWNT composite film. Nano Lett 3:1285

    ADS  Google Scholar 

  81. Kim YY, Yun J, Lee YS, Kim HI (2010) Electro-responsive transdermal drug release of MWCNT/PVA nanocomposite hydrogels. Carbon Lett 11:211

    Google Scholar 

  82. Liu W, Zhao H, Inoue Y, Wang X, Bradford PD, Kim H, Qiu Y, Zhu Y (2012) Poly(vinyl alcohol) reinforced with large-diameter carbon nanotubes via spray winding. Comp Part A: Appl Sci Manuf 43:587

    Google Scholar 

  83. Castell P, Cano M, Maser WK, Benito AM (2013) Combination of two dispersants as a valuable strategy to prepare improved poly(vinyl alcohol)/carbon nanotube composites. Compos Sci Tech 80:101

    Google Scholar 

  84. Bauer RS (1979) Epoxy resin chemistry, vol 114, Advanced in chemistry series. American Chemical Society, Washington, DC, p 1

    Google Scholar 

  85. Serrano E, Tercjak A, Kortaberria G, Pomposo JA, Mecerreyes D, Zafeiropoulos NE, Stamm M, Mondragon I (2006) Nanostructured thermosetting systems by modification with epoxidized styrene−butadiene star block copolymers. Effect of epoxidation degree. Macromolecules 39(2254)

    Google Scholar 

  86. Chen JL, Jin FL, Park SJ (2010) Thermal stability and impact and flexural properties of epoxy resins/epoxidized castor oil/nano-CaCO3 ternary systems. Macromol Res 18:862

    Google Scholar 

  87. Jin FL, Park SJ (2009) Thermal stability of trifunctional epoxy resins modified with nanosized calcium carbonate. Bull Korean Chem Soc 30:334

    Google Scholar 

  88. Jin FL, Park SJ (2011) A review of the preparation and properties of carbon nanotubes-reinforced polymer composites. Carbon Lett 12:57

    Google Scholar 

  89. Hsu SH, Wu MC, Chen S, Chuang CM, Lin SH, Su WF (2012) Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites. Carbon 50:896

    Google Scholar 

  90. Jin FL, Ma CJ, Park SJ (2011) Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A 528:8517

    Google Scholar 

  91. Liu L, Wagner HD (2005) Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos Sci Technol 65:1861

    Google Scholar 

  92. Luan J, Zhang A, Zheng Y, Sun L (2012) Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites. Compos Part A Appl Sci Manuf 43:1032

    Google Scholar 

  93. Park OK, Kim NH, Yoo GH, Rhee KY, Lee JH (2010) Effects of the surface treatment on the properties of polyaniline coated carbon nanotubes/epoxy composites. Compos Part B Eng 41:2

    Google Scholar 

  94. Barghamadi M, Behmadi H (2012) Influence of the epoxy functionalization of multiwall carbon nanotubes on the nonisothermal cure kinetics and thermal properties of epoxy/multiwall carbon nanotube nanocomposites. Polym Compos 33:1085

    Google Scholar 

  95. Ma PC, Mo SY, Tang BZ, Kim JK (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824

    Google Scholar 

  96. Xu L, Fang Z, Song P, Peng M (2010) Functionalization of carbon nanotubes by corona-discharge induced graft polymerization for the reinforcement of epoxy nanocomposites. Plasma Process Polym 7:785

    Google Scholar 

  97. Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592

    Google Scholar 

  98. Wang J, Fang Z, Gu A, Xu L, Liu F (2006) Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J Appl Polym Sci 100:97

    Google Scholar 

  99. Lee JH, Rhee KY, Park SJ (2011) Silane modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites. Compos Part A Appl Sci Manuf 42:478

    Google Scholar 

  100. Špitalský Z, Matějka L, Šlouf M, Konyushenko EN, Kovářova J, Zemek J, Kotek J (2009) Modification of carbon nanotubes and tts effect on properties of carbon nanotube/epoxy nanocomposites. Polym Compos 30:1378

    Google Scholar 

  101. Hadjiev VG, Warren GL, Luyi S, Davis DC, Lagoudas DC, Sue HJ (2010) Raman microscopy of residual strains in carbon nanotube/epoxy composites. Carbon 48:1750

    Google Scholar 

  102. Luo Y, Zhao Y, Cai J, Duan Y, Du S (2012) Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Design 33:405

    ADS  Google Scholar 

  103. Kim HC, Kim SK, Kim JT, Rhee KY, Kathi J (2010) The effect of different treatment methods of multiwalled carbon nanotubes on thermal and flexural properties of their epoxy nanocomposites. J Polym Sci Part B Polym Phys 48:1175

    ADS  Google Scholar 

  104. Peng K, Liu LQ, Li H, Meyer H, Zhang Z (2011) Room temperature functionalization of carbon nanotubes using an ozone/water vapor mixture. Carbon 49:70

    Google Scholar 

  105. Zheng Y, Zhang A, Chen Q, Zhang J, Ning R (2006) Functionalized effect on carbon nanotube/epoxy nano-composites. Mater Sci Eng A 435–436:145

    Google Scholar 

  106. Armstrong G, Ruether M, Blighe F, Blau W (2009) Functionalized multi-walled carbon nanotubes for epoxy nanocomposites with improved performance. Polym Int 58:1002

    Google Scholar 

  107. Yang K, Gu M (2009) The effects of triethylenetetramine grafting of multi-walled carbon nanotubes on its dispersion, filler-matrix interfacial interaction and the thermal properties of epoxy nanocomposites. Polym Eng Sci 49:2158

    Google Scholar 

  108. Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL (2010) Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids 71:539

    ADS  Google Scholar 

  109. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48:5662

    Google Scholar 

  110. Teng CC, Ma CCM, Chiou KC, Lee TM (2012) Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride. Compos Part B 43:265

    Google Scholar 

  111. Auad ML, Mosiewicki MA, Uzunpinar C, Williams RJJ (2010) Functionalization of carbon nanotubes and carbon nanofibers used in epoxy/amine matrices that avoid partitioning of the monomers at the fiber interface. Polym Eng Sci 50:183

    Google Scholar 

  112. Schulz SC, Faiella G, Buschhorn ST, Prado LASA, Giordano M, Schulte K (2011) Combined electrical and rheological properties of shear induced multiwall carbon nanotube agglomerates in epoxy suspensions. Eur Polym J 47:2069

    Google Scholar 

  113. Gkikas G, Barkoula NM, Paipetis AS (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos Part B Eng 43:2697

    Google Scholar 

  114. Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70:1154

    Google Scholar 

  115. Feng QP, Yang JP, Fu SY, Mai YW (2010) Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity. Carbon 48:2057

    Google Scholar 

  116. Rahatekar SS, Zammarano M, Matko S, Koziol KK, Windle AH, Nyden M, Kashiwagi T, Gilman JW (2010) Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stabil 95:870

    Google Scholar 

  117. Loos MR, Yang J, Feke DL, Manas-Zloczower I (2012) Effect of block-copolymer dispersants on properties of carbon nanotube/epoxy systems. Compos Sci Technol 72:482

    Google Scholar 

  118. Saw LN, Mariatti M, Azura AR, Azizan A, Kim JK (2012) Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites. Compos Part B 43:2973

    Google Scholar 

  119. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites. A comparative study. Compos Sci Technol 65(2300)

    Google Scholar 

  120. Prolongo SG, Gude MR (2011) Ureña A. Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment. Compos Sci Technol 71:765

    Google Scholar 

  121. Cividanes LS, Brunelli DD, Antunes EF, Corat EJ, Sakane KK, Thim GP (2012) Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and Luminescence spectroscopy. J Appl Polym Sci 127:544

    Google Scholar 

  122. Kim MT, Rhee KY, Park SJ, Hiu D (2012) Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites. Compos Part B 43:2298

    Google Scholar 

  123. Qu Z, Wang G (2012) A comparative study on the properties of the different amino-functionalized multiwall carbon nanotubes reinforced epoxy resin composites. J Appl Polym Sci 124:403

    Google Scholar 

  124. Farahani RD, Dalir H, Borgne VL, Gautier LA, Khakani MAE, Lévesque M, Therriault D (2012) Reinforcing epoxy nanocomposites with functionalized carbon nanotubes via biotin-streptavidin interactions. Compos Sci Technol 72:1387

    Google Scholar 

  125. Kwon Y, Yim B, Kim J, Kim J (2011) Dispersion, hybrid interconnection and heat dissipation properties of functionalized carbon nanotubes in epoxy composites for electrically conductive adhesives (ECAs). Microelectron Reliab 51:812

    Google Scholar 

  126. Xu J, Yao P, Jiang Z, Liu H, Li X, Liu L, Li M, Zheng Y (2012) Preparation, morphology, and properties of conducting polyaniline-grafted multiwalled carbon nanotubes/epoxy composites. J Appl Polym Sci 125:E334–E341

    Google Scholar 

  127. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64:2309

    Google Scholar 

  128. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos Part A 34:689

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea CCS R&D Center (KCRC) grant funded by the Korean government (Ministry of Education, Science and Technology) (0031985) and published as a review article in the Carbon Letters (2012, 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, SJ., Lee, SY., Jin, FL. (2015). Surface Modification of Carbon Nanotubes for High-Performance Polymer Composites. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_34

Download citation

Publish with us

Policies and ethics