Skip to main content

Stem Cell Applications: An Overview

  • Chapter
  • First Online:
Stem Cells in Aesthetic Procedures
  • 1774 Accesses

Abstract

The application of stem cells to the treatment of human disease has received a remarkable acceleration in recent years, after the discovery of unexpected sources of progenitor cells and the realization that somatic cells can be modulated to a status of early progenitors, capable of further differentiation along diverse directions. It has been therefore examined, in this review, first, the variety of naturally occurring stem cells and, afterward, the various sources of somatic cells, which can be redirected along different types of differentiated cells. Particular attention, in the former case, has been devoted to hemopoietic cells (either bone marrow or cord blood derived), which are now regularly used in the treatment of severe hematological and non-hematological disorders.

Among other sources of stem cells, increasing weight is now acquired by easily available tissues like the skin and the adipose tissue, from which numerous types of so-called induced pluripotent stem cells (IPSCs) can be obtained. Such IPSCs are now studied for various types of diseases, for instance, neurological disorders like Parkinson’s disease, with autologous cells evolving into neural progenitors and then, with proper gene insertion, becoming a model for cell replacement gene therapy.

Analogous methods of cell remodelling are applied for cardiomyocyte precursors, to be used for cardiac failure. Insulin-producing cells can be obtained in view of a cell therapy for diabetes, while stem cell treatments are also possible for diseases of the bone and cartilage; other areas of special interest, like dental and cornea regeneration, have been studied, as the field of possible applications becomes wider and wider.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson EB. The cell in development and inheritance. New York: Macmillan; 1898.

    Google Scholar 

  2. McCulloch EA, Till JE. Perspectives on the properties of stem cells. Nat Med. 2005;11(10):1026–8.

    CAS  PubMed  Google Scholar 

  3. Lajtha L. Stem cell concepts. Differentiation. 1979;14(1–2):23–34.

    CAS  PubMed  Google Scholar 

  4. Till JE, McCulloch EA, Siminovitch L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci U S A. 1964;51:29–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vogel H, Niewisch H, Matioli G. Stochastic development of stem cells. J Theor Biol. 1969;22(2):249–70.

    CAS  PubMed  Google Scholar 

  6. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen T, Heller E, Beronja S, Oshimori N, Stokes N, Fuchs E. An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature. 2012;45(7396):104–8.

    Google Scholar 

  8. Potten C. Stem cells. London: Academic; 1997.

    Google Scholar 

  9. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157–8.

    CAS  PubMed  Google Scholar 

  10. Eridani S, Sgaramella V, Cova L. Stem cells: from embryology to cellular therapy; an appraisal of the present state of art. Cytotechnology. 2004;44(3):125–41.

    PubMed  PubMed Central  Google Scholar 

  11. Besser D. Stem cell biology–from basic research to regenerative medicine. J Mol Med (Berl). 2012;90(7):731–3.

    Google Scholar 

  12. Ivanova N, Dimos J, Schaniel C, Hackney J, Moore K, Lemischka I. A stem cell molecular signature. Science. 2002;298(5593):601–4.

    CAS  PubMed  Google Scholar 

  13. Woods DC, White YA, Tilly JL. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future. Reprod Sci. 2013;20(1):7–15.

    PubMed  PubMed Central  Google Scholar 

  14. Van der Kooy D, Weiss S. Why stem cells? Science. 2000;287(5457):1439–41.

    PubMed  Google Scholar 

  15. Kerr CL, Gearhart JD, Elliott AM, Donovan PJ. Embryonic germ cells: when germ cells become stem cells. Semin Reprod Med. 2006;24(5):304–13.

    CAS  PubMed  Google Scholar 

  16. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mardanpour P, Guan K, Nolte J, Lee JH, Hasenfuss G, Engel W, Nayernia K. Potency of germ cells and its relevance for regenerative medicine. J Anat. 2008;213(1):26–9.

    PubMed  PubMed Central  Google Scholar 

  18. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cells derived from human blastocysts. Science. 1998;282(5391):1145–7.

    CAS  PubMed  Google Scholar 

  19. Swijnenburg RJ, Schrepfer S, Govaert JA, Cao F, Ransohoff K, Sheikh AY, Haddad M, Connolly AJ, Davis MM, Robbins RC, Wu JC. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A. 2008;105(35):12991–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cibelli JB, Kiessling AA, Cunniff K, Richards C, Lanza RP, West MD. Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. e-biomed. J Regen Med. 2001;2:25–31.

    Google Scholar 

  21. Noggle S, Fung H, Gore A, Martinez H, Crumm Satriani K, Prosser R, Oum K. Human oocytes reprogram somatic cells to a pluripotent state. Nature. 2011;478(7367):70–5.

    CAS  PubMed  Google Scholar 

  22. Vogel G. Stem cells: human cells cloned—almost. Science. 2011;334(6052):26–7.

    PubMed  Google Scholar 

  23. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS  PubMed  Google Scholar 

  24. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321:699–702.

    CAS  PubMed  Google Scholar 

  25. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–6.

    CAS  PubMed  Google Scholar 

  26. Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep. 2011;12(7):720–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295–304.

    Google Scholar 

  28. Lister R, Pelizzola MYS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471(7336):68–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim K, Doi A, Wen B, Ng K. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Papp B, Plath K. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 2011;21(3):486–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, Clark AT, Pyle AD, Lowry WE, Plath K. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell. 2010;7(3):329–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Siuvkin II, Thompson JA. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirai H, Tani T, Katoku-Kikyo N, Kellner S, Karian P, Firpo M, Kikyo N. Radical acceleration of nuclear reprogramming by chromatin remodeling with transactivation domain of MyoD. Stem Cells. 2011;29(9):1349.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bartsch G, Yoo JJ, De Coppi P, Siddiqui MM, Schuch G, Pohl HG, Fuhr J, Perin L, Soker S, Atala A. Propagation, expansion, and multilineage differentiation of human somatic cells from dermal progenitors. Stem Cells Dev. 2005;14(3):337–48.

    CAS  PubMed  Google Scholar 

  36. Chamberlain G, Fox J, Ashton B, Middleton J. Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features and potential for homing. Stem Cells. 2007;25(11):2739–49.

    CAS  PubMed  Google Scholar 

  37. Toma JG, McKenzie IA, Bagli D, Miller FD. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 2005;23(6):727–37.

    CAS  PubMed  Google Scholar 

  38. Fernandes KJ, Toma JG, Miller FD. Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philos Trans R Soc Lond B Biol Sci. 2008;363(1489):185–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Thatava T, Armstrong AS, Sakuma T, Ohmine S, Sundsbak JL, Harris PC, Kudva YC, Ikeda Y. Successful disease-specific induced pluripotent stem cell generation from patients with kidney transplantation. Stem Cell Res Ther. 2011;2(6):48.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. PA Z, Zhu M, Ashjian P, De Ugarte DA, Huang JL, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Google Scholar 

  41. Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ, van Ham SM, van Milligen FJ. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 2007;16(1):91–104.

    PubMed  Google Scholar 

  42. Folgiero V, Migliano E, Tedesco M, Iacovelli S, Bon G, Torre ML, Sacchi A, Marazzi M, Bucher S, Falcioni R. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant. 2010;19(10):1225–35.

    PubMed  Google Scholar 

  43. Tremolada C, Palmieri G, Ricordi C. Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine. Cell Transplant. 2010;19(10):1217–23.

    PubMed  Google Scholar 

  44. Kim J, Lee Y, Kim H, Hwang K, Kwon H, Kim S, Cho D, Kang S, You J. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 2007;40(1):75–90.

    CAS  PubMed  Google Scholar 

  45. Antonucci I, Pantalone A, De Amicis D, D’Onofrio S, Stuppia L, Palka G, Salini V. Human amniotic fluid stem cells culture onto titanium screws: a new perspective for bone engineering. J Biol Regul Homeost Agents. 2009;23(4):277–9.

    CAS  PubMed  Google Scholar 

  46. Joo S, Ko IK, Atala A, Yoo JJ, Lee SJ. Amniotic fluid-derived stem cells in regenerative medicine research. Arch Pharm Res. 2012;35(2):271–80.

    CAS  PubMed  Google Scholar 

  47. Evangelista M, Soncini M, Parolini O. Placenta-derived stem cells: new hope for cell therapy? Cytotechnology. 2008;58(1):33–42.

    PubMed  PubMed Central  Google Scholar 

  48. Thomas ED, Storb R, Clift RA, Fefer A, Johnson FL, Neiman PE, Lerner KG, Glucksberg H, Buckner CD. Bone-marrow transplantation. N Engl J Med. 1975;292(17):832–43.

    CAS  PubMed  Google Scholar 

  49. Cutler C, Antin JH. Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells. 2001;19(2):108–17.

    CAS  PubMed  Google Scholar 

  50. Piacibello W, Sanavio L, Garetto L, Severino A, Bergandi D, Ferrario J, Faioli F, Berger M, Aglietta M. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood. 1997;89(8):2644–53.

    CAS  PubMed  Google Scholar 

  51. Eridani S, Mazza U, Massaro P, La Targia L, Maiolo AT, Mosca A. Cytokine effect on ex vivo expansion of haematopoietic stem cells of different human sources. Biotherapy. 1998;11(4):291–6.

    CAS  PubMed  Google Scholar 

  52. Rubinstein P. Cord blood banking for clinical transplantation. Bone Marrow Transplant. 2009;44(10):635–42.

    CAS  PubMed  Google Scholar 

  53. Butler MG, Menitove JE. Umbilical cord blood banking: an update. J Assist Reprod Genet. 2011;28(8):669–76.

    PubMed  PubMed Central  Google Scholar 

  54. McKenna DH, Brunstein CG. Umbilical cord blood: current status and future directions. Vox Sang. 2011;100(1):150–62.

    CAS  PubMed  Google Scholar 

  55. Roifman CM, Fischer A, Notarangelo LD, de la Morena MT, Seger RA. Indications for hemopoietic stem cell transplantation. Immunol Allergy Clin North Am. 2010;30(2):2612.

    Google Scholar 

  56. Bhatia M, Walters MC. Haematopoietic cell transplantation for thalassemia and sickle cell disease: past, present and future. Bone Marrow Transplant. 2008;41(2):109–17.

    CAS  PubMed  Google Scholar 

  57. Lucarelli G, Isgrò A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825.

    PubMed  PubMed Central  Google Scholar 

  58. Krause DS, Theise N, Colector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.

    CAS  PubMed  Google Scholar 

  59. Sadelain M, Boulad F, Lisowki L, Moi P, Riviere I. Stem cell engineering for the treatment of severe hemoglobinopathies. Curr Mol Med. 2008;8(7):690–7.

    CAS  PubMed  Google Scholar 

  60. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, Amrolia PJ, Gaspar HB, Davies EG, Friedrich W, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602–10.e1–11.

    Google Scholar 

  62. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360(5):447–58.

    CAS  PubMed  Google Scholar 

  63. Pessach IM, Notarangelo LD. Gene therapy for primary immunodeficiencies: looking ahead, toward gene correction. J Allergy Clin Immunol. 2011;127(6):1344–50.

    PubMed  PubMed Central  Google Scholar 

  64. Troeger C, Surbek V, Schöberlein A. In utero haematopoietic stem cell transplantation: experiences in mice, sheep and humans. Swiss Med Weekly. 2006;137 Suppl 155:14S–9.

    Google Scholar 

  65. Flake AW. In utero stem cell transplantation. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):941–58.

    PubMed  Google Scholar 

  66. Nijagal A, Flake AW, Mackenzie TC. In utero hematopoietic cell transplantation for the treatment of congenital anomalies. Clin Perinatol. 2012;39(2):301–10.

    PubMed  Google Scholar 

  67. Chaudhury S, Auerbach AD, Kernan NA, Small TN, Prockop SE, Scaradavou A, Heller G, Wolden S, O’Reilly RJ, Boulad F. Fludarabine-based cytoreductive regimen and T-cell-depleted grafts from alternative donors for the treatment of high-risk patients with Fanconi anaemia. Br J Haematol. 2008;140(6):644–55.

    CAS  PubMed  Google Scholar 

  68. Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.

    CAS  PubMed  Google Scholar 

  69. Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20(11):1103–10.

    CAS  PubMed  Google Scholar 

  70. Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH. Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr Opin Neurol. 2012;25(2):125–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Smith K. Treatment frontiers. Nature. 2010;466(7310):S15–8.

    CAS  PubMed  Google Scholar 

  72. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A. 2010;107(36):15921–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in x-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23.

    CAS  PubMed  Google Scholar 

  74. Lee ST, Chu K, Jung K-H, Song YM, Jeon D, Kim S, Kim M, Lee SK, Roh JK. Direct generation of neurosphere-like cells from human dermal fibroblasts. PLoS One. 2011;6(7):e21801.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bai X, Yan Y, Song YH, Seidensticker M, Rabinovich B, Metzele R, Bankson JA, Vykoukal D, Alt E. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2010;31(4):489–501.

    CAS  PubMed  Google Scholar 

  76. Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell. 2008;3(4):382–8.

    CAS  PubMed  Google Scholar 

  77. Neri T, Stefanovic S, Pucéat M. Cardiac regeneration: still a 21st century challenge in search for cardiac progenitors from stem cells and embryos. J Cardiovasc Pharmacol. 2010;56(1):16–21.

    CAS  PubMed  Google Scholar 

  78. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Palpant N, Murry CE. Regenerative medicine: reprogramming the injured heart. Nature. 2012;485(7400):585–8.

    CAS  PubMed  Google Scholar 

  80. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway S, Fu J, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Song K, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Efrat S, Russ HA. Making β-cells from adult tissues. Trends Endocrinol Metab. 2012;23(6):276–84.

    Google Scholar 

  83. Liew CG. Generation of insulin-producing cells from pluripotent stem cells: from selection of cell sources to optimization of protocols. Rev Diabet Stud. 2010;7(2):82–92.

    PubMed  PubMed Central  Google Scholar 

  84. Sulzbacher S, Schroeder IS, Truong TT, Wobus AM. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Rev. 2009;5(2):159–73.

    CAS  PubMed  Google Scholar 

  85. Shi Y. Generation of functional insulin-producing cells from human embryonic stem cells in vitro. Meth. Mol Biol. 2010;636:79–85.

    Google Scholar 

  86. Converse JM, Casson PR. The historical background of transplantation. In: Rapaport FT, Dausset J, editors. Human transplantation. New York: Grune and Stratton; 1968.

    Google Scholar 

  87. Fuchs E, Segre EA. Stem cells: a new lease of life. Cell. 2000;100(1):143–55.

    CAS  PubMed  Google Scholar 

  88. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80.

    CAS  PubMed  Google Scholar 

  89. Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm. 2011;8(5):1471–9.

    CAS  PubMed  Google Scholar 

  90. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, Maruggi G, Ferrari G, Provasi E, Bonini C, Capurro S, Conti A, Magnoni C, Giannetti A, De Luca M. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12(12):1397–402.

    CAS  PubMed  Google Scholar 

  91. Uitto J, Christiano AM, McLean WHI, McGrath JA. Novel molecular therapies for heritable skin disorders. J Invest Dermatol. 2012;132(3 Pt 2z):820–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schäfer-Nolte F, Allmeling C, Kasper C, Vogt PM. Artificial skin–culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved Spider silk fibres. PLoS One. 2011;6(7):e21833.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods. 2007;3:227–30.

    Google Scholar 

  94. Toyoshima K, Asakawa K, Ishibashi N, Toki H, Ogawa M, Hasegawa T, Irié T, Tachikawa T, Sato A, Takeda A, Tsuji T. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nat Commun. 2012;3:784.

    PubMed  PubMed Central  Google Scholar 

  95. Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T. Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One. 2011;6(7):e21531.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55.

    CAS  PubMed  Google Scholar 

  97. Lee SK, Teng Y, Wong HK, Ng TK, Huang L, Lei P, Choy KW, Liu Y, Zhang M, Lam DS, Yam GH, Pang CP. MicroRNA-145 regulates human corneal epithelial differentiation. PLoS One. 2011;6(6):e21249.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F, Sharma M, Sharma P, Tripathi RP, Gurudutta GU. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med. 2009;13(11–12):4385–402.

    CAS  PubMed  Google Scholar 

  99. Jäger M, Hernigou P, Zilkens C, Herten M, Li X, Fischer J, Krauspe R. Cell therapy in bone healing disorders. Orthop Rev. 2010;2(2):e20.

    Google Scholar 

  100. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001;97(5):1227–31.

    CAS  PubMed  Google Scholar 

  101. Driessen GJ, Gerritsen EJ, Fischer A, Fasth A, Hop WC, Veys P, Porta F, Cant A, Steward CG, Vossen JM, Uckan D, Friedrich W. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant. 2003;32(7):657–63.

    CAS  PubMed  Google Scholar 

  102. Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res. 2002;405:14–23.

    PubMed  Google Scholar 

  103. Gangji V, Hauzeur JP. Cellular-based therapy for osteonecrosis. Orthop Clin North Am. 2009;40(2):213–21.

    PubMed  Google Scholar 

  104. El Tamer MK, Reis RL. Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med. 2009;3(5):327–37.

    PubMed  Google Scholar 

  105. Marlovits S, Zeller P, Singer P, Resinger C, Vécsei V. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006;57(1):24–31.

    PubMed  Google Scholar 

  106. Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010;38(6):1259–71.

    PubMed  Google Scholar 

  107. Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, Meeusen S, Althage A, Cho CY, Wu X, Schultz PG. A stem cell-based approach to cartilage repair. Science. 2012;336(6082):717–21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Eridani M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eridani, S. (2014). Stem Cell Applications: An Overview. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics