Skip to main content

Weighed Aging Ensemble of Heterogenous Classifiers for Incremental Drift Classification

  • Conference paper
Advances in Soft Computing and Its Applications (MICAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8266))

Included in the following conference series:

  • 2387 Accesses

Abstract

Nowadays simple methods of data analysis are not sufficient for efficient management of an average enterprize, since for smart decisions the knowledge hidden in data is highly required, among them methods of collective decision making called classifier ensemble are the focus of intense research. Unfortunately the great disadvantage of traditional classification methods is that they ”assume” that statistical properties of the discovered concept (which model is predicted) are being unchanged. In real situation we could observe so-called concept drift, which could be caused by changes in the probabilities of classes or/and conditional probability distributions of classes. The paper presents extension of Weighted Aging Classifier Ensemble (WAE), which is able to adapt to the changes in data stream. It assumes that the classified data stream is given in a form of data chunks, and the concept drift could appear in the incoming data chunks. Instead of drift detection WAE tries to construct self-adapting classifier ensemble. Therefore on the basis of the each chunk one individual is trained and WAE checks if it could form valuable ensemble with the previously trained models. The presented extension uses the ensemble of heterogeneous classifiers, what boosts the classification accuracy, what was confirmed on the basis of the computer experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press (2010)

    Google Scholar 

  2. Bifet, A., Holmes, G., Pfahringer, B., Read, J., Kranen, P., Kremer, H., Jansen, T., Seidl, T.: MOA: A real-time analytics open source framework. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 617–620. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Information Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  4. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  5. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106 (2001)

    Google Scholar 

  6. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3, 79–87 (1991)

    Article  Google Scholar 

  7. Klinkenberg, R., Renz, I.: Adaptive information filtering: Learning in the presence of concept drifts, pp. 33–40 (1998)

    Google Scholar 

  8. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 123–130 (November 2003)

    Google Scholar 

  9. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)

    Google Scholar 

  10. Kurlej, B., Wozniak, M.: Active learning approach to concept drift problem. Logic Journal of the IGPL 20(3), 550–559 (2012)

    Article  MathSciNet  Google Scholar 

  11. Muhlbaier, M.D., Topalis, A., Polikar, R.: Learn + + .nc: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Transactions on Neural Networks 20(1), 152–168 (2009)

    Article  Google Scholar 

  12. Partridge, D., Krzanowski, W.: Software diversity: practical statistics for its measurement and exploitation. Information and Software Technology 39(10), 707–717 (1997)

    Article  Google Scholar 

  13. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  15. Shipp, C.A., Kuncheva, L.: Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3(2), 135–148 (2002)

    Article  Google Scholar 

  16. Nick Street, W., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 377–382. ACM, New York (2001)

    Chapter  Google Scholar 

  17. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 226–235. ACM, New York (2003)

    Chapter  Google Scholar 

  18. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Google Scholar 

  19. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp. 25–42 (2001)

    Google Scholar 

  20. Woźniak, M., Kasprzak, A., Cal, P.: Weighted aging classifier ensemble for the incremental drifted data streams. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 579–588. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woźniak, M., Cal, P. (2013). Weighed Aging Ensemble of Heterogenous Classifiers for Incremental Drift Classification. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Soft Computing and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45111-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45111-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45110-2

  • Online ISBN: 978-3-642-45111-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics