Skip to main content

Lower and Upper Bounds for Long Induced Paths in 3-Connected Planar Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8165))

Included in the following conference series:

Abstract

Let G be a 3-connected planar graph with n vertices and let p(G) be the maximum number of vertices of an induced subgraph of G that is a path. We prove that \(p(G) \geq \frac{\log n}{12 \log \log n}\). To demonstrate the tightness of this bound, we notice that the above inequality implies p(G) ∈ Ω((log2 n)1 − ε), where ε is any positive constant smaller than 1, and describe an infinite family of 3-connected planar graphs for which p(G) ∈ O(logn). As a byproduct of our research, we prove a result of independent interest: Every 3-connected planar graph with n vertices contains an induced subgraph that is outerplanar and connected and that contains at least \(\sqrt[3] n\) vertices. The proofs in the paper are constructive and give rise to O(n)-time algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arocha, J.L., Valencia, P.: Long induced paths in 3-connected planar graphs. Discuss. Math. Graph Theory 20(1), 105–107 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atminas, A., Lozin, V.V., Razgon, I.: Linear time algorithm for computing a small biclique in graphs without long induced paths. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 142–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Böhme, T., Mohar, B., Skrekovski, R., Stiebitz, M.: Subdivisions of large complete bipartite graphs and long induced paths in k-connected graphs. Journal of Graph Theory 45(4), 270–274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Di Battista, G., Tamassia, R., Vismara, L.: Output-sensitive reporting of disjoint paths. Algorithmica 23, 302–340 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdös, P., Saks, M., Sós, V.T.: Maximum induced trees in graphs. Journal of Combinatorial Theory, Series B 41(1), 61–79 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discrete & Computational Geometry 40(1), 103–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  8. Gavril, F.: Algorithms for maximum weight induced paths. Inf. Process. Lett. 81(4), 203–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gavril, F., Laredo, V.T., de Werra, D.: Chordless paths, odd holes, and kernels in graphs without m-obstructions. J. Algorithms 17(2), 207–221 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goaoc, X., Kratochvíl, J., Okamoto, Y., Shin, C.-S., Spillner, A., Wolff, A.: Untangling a planar graph. Discrete & Computational Geometry 42(4), 542–569 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ishizeki, T., Otachi, Y., Yamazaki, K.: An improved algorithm for the longest induced path problem on k-chordal graphs. Discrete Applied Mathematics 156(15), 3057–3059 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set and longest induced path on AT-free graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 309–321. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Lozin, V.V., Rautenbach, D.: Some results on graphs without long induced paths. Inf. Process. Lett. 88(4), 167–171 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 40–51. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  15. Mirsky, L.: A dual of Dilworth’s decomposition theorem. The American Mathematical Monthly 78(8), 876–877 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148 (1990)

    Google Scholar 

  17. Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced paths. Acta Cybern. 15(1), 107 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Giacomo, E., Liotta, G., Mchedlidze, T. (2013). Lower and Upper Bounds for Long Induced Paths in 3-Connected Planar Graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 2013. Lecture Notes in Computer Science, vol 8165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45043-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45043-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45042-6

  • Online ISBN: 978-3-642-45043-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics