Skip to main content

The Number of Different Unfoldings of Polyhedra

  • Conference paper
Algorithms and Computation (ISAAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8283))

Included in the following conference series:

Abstract

Given a polyhedron, the number of its unfolding is obtained by the Matrix-Tree Theorem. For example, a cube has 384 ways of unfolding (i.e., cutting edges). By omitting mutually isomorphic unfoldings, we have 11 essentially different (i.e., nonisomorphic) unfoldings. In this paper, we address how to count the number of nonisomorphic unfoldings for any (i.e., including nonconvex) polyhedron. By applying this technique, we also give the numbers of nonisomorphic unfoldings of all regular-faced convex polyhedra (i.e., Platonic solids, Archimedean solids, Johnson-Zalgaller solids, Archimedean prisms, and antiprisms), Catalan solids, bipyramids and trapezohedra. For example, while a truncated icosahedron (a Buckminsterfullerene, or a soccer ball fullerene) has 375,291,866,372,898,816, 000 (approximately 3.75 ×1020) ways of unfolding, it has 3,127,432,220, 939,473,920 (approximately 3.13 ×1018) nonisomorphic unfoldings. A truncated icosidodecahedron has 21,789,262,703,685,125,511,464,767,107, 171,876,864,000 (approximately 2.18 ×1040) ways of unfolding, and has 181,577,189,197,376, 045,928,994,520,239,942,164,480 (approximately 1.82 ×1038) nonisomorphic unfoldings.

A preliminary version was presented at EuroCG2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, J., Kuwata, T., Langerman, S., Okawa, K., Sato, I., Shephard, G.C.: Determination of All Tessellation Polyhedra with Regular Polygonal Faces. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033, pp. 1–11. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Atkins, P.W., Child, M.S., Phillips, C.S.G.: Tables for Group Theory, Oxford University Press (1970)

    Google Scholar 

  3. Boesch, G.F.T., Bogdanowicz, Z.R.: The Number of Spanning Trees in a Prism, Inter. J. Comput. Math. 21, 229–243 (1987)

    Article  MATH  Google Scholar 

  4. Bouzette, S., Vandamme, F.: The regular Dodecahedron and Icosahedron unfold in 43380 ways (unpublished manuscript)

    Google Scholar 

  5. Brown, T.J.N., Mallion, R.B., Pollak, P., de Castro, B.R.M., Gomes, J.A.N.F.: The number of spanning trees in buckminsterfullerene. Journal of Computational Chemistry 12, 1118–1124 (1991)

    Article  MathSciNet  Google Scholar 

  6. Brown, T.J.N., Mallion, R.B., Pollak, P., Roth, A.: Some Methods for Counting the Spanning Trees in Labelled Molecular Graphs, examined in Relation to Certain Fullerenes. Discrete Applied Mathematics 67, 51–66 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buekenhout, F., Parker, M.: The Number of Nets of the Regular Convex Polytopes in Dimension ≤ 4. Disc. Math. 186, 69–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burnside, A.: Theory of Groups of Finite Order. Cambridge University Press (1911)

    Google Scholar 

  9. Cromwell, P.R.: Polyhedra. Cambridge University Press (1997)

    Google Scholar 

  10. Coxeter, H.S.M.: Regular and semi-regular polytopes. II. Math. Z. 188, 3–45 (1985)

    MathSciNet  Google Scholar 

  11. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press (2007)

    Google Scholar 

  12. Haghigh, M.H.S., Bibaki, K.: Recursive Relations for the Number of Spanning Trees. Applied Mathematical Sciences 3(46), 2263–2269 (2009)

    MathSciNet  Google Scholar 

  13. Hippenmeyer, C.: Die Anzahl der inkongruenten ebenen Netze eines regulären Ikosaeders. Elem. Math. 34, 61–63 (1979)

    Google Scholar 

  14. Horiyama, T., Shoji, W.: Edge unfoldings of Platonic solids never overlap. In: Proc. of the 23rd Canadian Conference on Computational Geometry, pp. 65–70 (2011)

    Google Scholar 

  15. Jeger, M.: Über die Anzahl der inkongruenten ebenen Netze des Würfels und des regulären Oktaeders. Elemente der Mathematik 30, 73–83 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Kleitman, D.J., Golden, B.: Counting trees in a certain class of graphs. Am. Math. Monthly 82, 40–44 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kobayashi, M., Suzuki, T.: Data of coordinates of all regular-faced convex polyhedra (1992), http://mitani.cs.tsukuba.ac.jp/polyhedron/

  18. Pandey, S., Ewing, M., Kunas, A., Nguyen, N., Gracias, D.H., Menon, G.: Algorithmic design of self-folding polyhedra. Proc. Natl. Acad. Sci. USA 108(50), 19885–19890 (2011)

    Article  Google Scholar 

  19. Sloane, N.J.A.: Sequence A103535, The On-Line Encyclopedia of Integer Sequences

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horiyama, T., Shoji, W. (2013). The Number of Different Unfoldings of Polyhedra. In: Cai, L., Cheng, SW., Lam, TW. (eds) Algorithms and Computation. ISAAC 2013. Lecture Notes in Computer Science, vol 8283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45030-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45030-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45029-7

  • Online ISBN: 978-3-642-45030-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics