Skip to main content

Hydrogenation and Related Reductions of Carbon Dioxide with Molecular Catalysts

  • Chapter
  • First Online:
Transformation and Utilization of Carbon Dioxide

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The use of carbon dioxide as C1 source to produce chemicals and fuels can be the basis of green and sustainable chemical industries. In this regard in the last decade, significant progress has been achieved in the hydrogenation of carbon dioxide and bicarbonate using homogeneous catalysis. For example, new catalyst systems have been reported, therefore showing high activity even under mild conditions. Furthermore, for the first time catalysts based on iron and cobalt were shown to yield TON being in the same range as many noble-metal-based complexes. In addition, interesting concepts for the catalyst recycling and the formic acid product separation have been presented as well as systems capable of hydrogen storage. Very recently, promising systems for the converting of CO2 to methanol with H2 have been developed opening new ways to a future methanol economy. Further reduction to CH4 with molecular hydrogen is still not known, but related reductions of carbon dioxide using boranes or hydrosilylation reagents can gain an interesting insight into the mechanism of such processes.

This chapter summarizes the recent developments in the reduction of carbon dioxide with molecular hydrogen and other hydride reagents starting from 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bcat:

catecholborane

Bpin:

pinacolborane

bpy:

bipyridine

cat.:

catalyst

Cp*:

pentamethylcyclopentadienyl

Cy:

cyclohexyl group

DBU:

1,8-diazabicycloundec-7-ene

DFT:

density functional theory

DHBP:

4,4′-dihydroxy-2,2′-bipyridine

DHPT:

4,7-dihydroxy-1,10-phenanthroline

DMFC:

direct methanol fuel cells

dmpe:

1,3-bis(dimethylphophino)ethane

dppm:

1,2-bis(diphenylphosphino)methane

dppp:

1,3-bis(diphenylphosphino)propane

EMIMCl:

1-ethyl-3-methylimidazolium chloride

FLP:

frustrated Lewis pairs

hex:

hexyl group

IL:

ionic liquid

iPr:

isopropyl group

IR:

infrared spectroscopy

KIE:

kinetic isotope effect

MD:

molecular dynamics

Me:

methyl group

Mes:

mesityl groups

MTA:

methanol-to-aromatics

MTD:

metadynamics

MTG:

methanol-to-gasoline

MTO:

methanol-to-olefins

mtppms:

sodium diphenylphosphinobenzene-3-sulfonate

NHC:

N-heterocyclic carbene

NMR:

nuclear magnetic resonance spectroscopy

OAc:

acetoxy group

OTf:

triflate group

Ph:

phenyl group

PNP:

pincer ligand (P donor atoms on the side arms N ~ in the middle); analogue PNN PCP

RT:

room temperature

SDQ:

single doubles quadruples

tBu:

tert-butyl group

TOF:

turnover frequency

TON:

turnover number

TMP:

tetramethylpiperidine

TS:

transition state

Verkade’s base:

2,8,9-triisopropyl-2,5,8,9-tetraaza-1-phosphabicyclo-[3, 3, 3]undecane

X:

halide anions such as Cl Br

References

  1. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Umwandlung von Kohlendioxid mit Übergangsmetall-Homogenkatalysatoren: eine molekulare Lösung für ein globales Problem? Angew Chem 123(37):8662–8690. doi:10.1002/ange.201102010

    Google Scholar 

  2. Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem 4(9):1216–1240. doi:10.1002/cssc.201000447

    CAS  Google Scholar 

  3. Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7(8):849–882. doi:10.1046/j.1365-2486.2001.00448.x

    Google Scholar 

  4. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev. doi:10.1021/cr300463y

    Google Scholar 

  5. Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81

    CAS  Google Scholar 

  6. Bertau M, Offermanns H, Menges G, Keim W, Effenberger FX (2010) Methanol findet zu wenig Beachtung als Kraftstoff und Chemierohstoff der Zukunft [Methanol needs more attention as a fuel and raw material for the future]. Chem Ing Tech 82(12):2055–2058. doi:10.1002/cite.201000159

    CAS  Google Scholar 

  7. Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387. doi:10.1021/cr068357u

    CAS  Google Scholar 

  8. Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898. doi:10.1021/ja202642y

    CAS  Google Scholar 

  9. Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52(1):104–107. doi:10.1002/anie.201204995

    CAS  Google Scholar 

  10. Haggin J (1994) New processes target methanol production, off-gas cleaning. Chem Eng News 72:29–31

    Google Scholar 

  11. Goehna H, Koenig P (1994) Producing methanol from CO2. ChemTech 24:36–39

    CAS  Google Scholar 

  12. Jessop PG, Ikariya T, Noyori R (1995) Homogeneous hydrogenation of carbon dioxide. Chem Rev 95(2):259–272. doi:10.1021/cr00034a001

    CAS  Google Scholar 

  13. Leitner W (1995) Carbon dioxide as a raw material: the synthesis of formic acid and its derivatives from CO2. Angew Chem Int Ed 34(20):2207–2221. doi:10.1002/anie.199522071

    CAS  Google Scholar 

  14. Jessop PG, Joó F, Tai C-C (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248(21–24):2425–2442. doi:10.1016/j.ccr.2004.05.019

    CAS  Google Scholar 

  15. de Vries JG, Elsevier CJ, Jessop PG (2007) 17 homogeneous hydrogenation of carbon dioxide. Handb Homogen Hydrogen 1:489–511

    Google Scholar 

  16. Rothenberg G (2008) Introduction. In: Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–38. doi:10.1002/9783527621866.ch1

    Google Scholar 

  17. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44(18):2636–2639. doi:10.1002/anie.200462121

    CAS  Google Scholar 

  18. Munshi P, Main AD, Linehan JC, Tai C-C, Jessop PG (2002) Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: the accelerating effect of certain alcohols and amines. J Am Chem Soc 124(27):7963–7971. doi:10.1021/ja0167856

    CAS  Google Scholar 

  19. Y-y O, Matsunaga T, Nakao Y, Sato H, Sakaki S (2005) Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of real catalyst, ligand effects, and solvation effects. J Am Chem Soc 127(11):4021–4032. doi:10.1021/ja043697n

    Google Scholar 

  20. Y-y O, Nakao Y, Sato H, Sakaki S (2006) Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of significant acceleration by water molecules. Organometallics 25(14):3352–3363. doi:10.1021/om060307s

    Google Scholar 

  21. Getty AD, Tai C-C, Linehan JC, Jessop PG, Olmstead MM, Rheingold AL (2009) Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: a mechanistic investigation using high-pressure NMR spectroscopy. Organometallics 28(18):5466–5477. doi:10.1021/om900128s

    CAS  Google Scholar 

  22. Gowrisankar S, Federsel C, Neumann H, Ziebart C, Jackstell R, Spannenberg A, Beller M (2013) Synthesis of stable phosphomide ligands and their use in Ru-catalyzed hydrogenations of bicarbonate and related substrates. ChemSusChem 6(1):85–91. doi:10.1002/cssc.201200732

    CAS  Google Scholar 

  23. Muller K, Sun Y, Thiel WR (2013) Ruthenium(II)–phosphite complexes as catalysts for the hydrogenation of carbon dioxide. ChemCatChem 5(6):1340–1343. doi:10.1002/cctc.201200818

    CAS  Google Scholar 

  24. Zhao G, Joó F (2011) Free formic acid by hydrogenation of carbon dioxide in sodium formate solutions. Catal Commun 14(1):74–76. doi:10.1016/j.catcom.2011.07.017

    CAS  Google Scholar 

  25. Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39(1):81–88

    CAS  Google Scholar 

  26. Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source – recent developments and future trends. Energy Environ Sci 5(8):8171–8181. doi:10.1039/C2EE21928J

    CAS  Google Scholar 

  27. Loges B, Boddien A, Gärtner F, Junge H, Beller M (2010) Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top Catal 53:902–914

    Google Scholar 

  28. Laurenczy G, Dalebrook AF, Gan W, Grasemann M, Moret S (2013) Hydrogen storage – beyond conventional methods. Chem Commun. doi:10.1039/C3CC43836H

    Google Scholar 

  29. Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38(1):73–82. doi:10.1039/B718842K

    CAS  Google Scholar 

  30. Jena P (2011) Materials for hydrogen storage: past, present, and future. J Phys Chem Lett 2(3):206–211. doi:10.1021/jz1015372

    CAS  Google Scholar 

  31. Eberle U, Felderhoff M, Schüth F (2009) Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed 48(36):6608–6630. doi:10.1002/anie.200806293

    CAS  Google Scholar 

  32. Papp G, Csorba J, Laurenczy G, Joó F (2011) A charge/discharge device for chemical hydrogen storage and generation. Angew Chem 123(44):10617–10619. doi:10.1002/ange.201104951

    Google Scholar 

  33. Boddien A, Gärtner F, Federsel C, Sponholz P, Mellmann D, Jackstell R, Junge H, Beller M (2011) Kohlenstoffdioxid-neutrale Wasserstoffspeicherung basierend auf Bicarbonaten und Formiaten. Angew Chem 123:6535–6538. doi:10.1002/ange.201101995

    Google Scholar 

  34. Federsel C, Jackstell R, Boddien A, Laurenczy G, Beller M (2010) Ruthenium-catalyzed hydrogenation of bicarbonate in water. ChemSusChem 3(9):1048–1050. doi:10.1002/cssc.201000151

    CAS  Google Scholar 

  35. Boddien A, Federsel C, Sponholz P, Mellmann D, Jackstell R, Junge H, Laurenczy G, Beller M (2012) Towards the development of a hydrogen battery. Energy Environ Sci 5(10):8907–8911. doi:10.1039/c2ee22043a

    CAS  Google Scholar 

  36. Urakawa A, Iannuzzi M, Hutter J, Baiker A (2007) Towards a rational design of ruthenium CO2 hydrogenation catalysts by ab initio metadynamics. Chem Eur J 13(24):6828–6840. doi:10.1002/chem.200700254

    CAS  Google Scholar 

  37. Urakawa A, Jutz F, Laurenczy G, Baiker A (2007) Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. Chem Eur J 13(14):3886–3899. doi:10.1002/chem.200601339

    CAS  Google Scholar 

  38. Dietrich J, Schindler S (2008) Kinetic studies on the hydrogenation of carbon dioxide to formic acid using a rhodium complex as catalyst. Z Anorg Allg Chem 634(14):2487–2494. doi:10.1002/zaac.200800352

    CAS  Google Scholar 

  39. Yasaka Y, Wakai C, Matubayasi N, Nakahara M (2010) Controlling the equilibrium of formic acid with hydrogen and carbon dioxide using ionic liquid. J Phys Chem A 114(10):3510–3515. doi:10.1021/jp908174s

    CAS  Google Scholar 

  40. Zhang Z, Xie Y, Li W, Hu S, Song J, Jiang T, Han B (2008) Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. Angew Chem Int Ed 47(6):1127–1129. doi:10.1002/anie.200704487

    CAS  Google Scholar 

  41. Zhang Z, Hu S, Song J, Li W, Yang G, Han B (2009) Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid. ChemSusChem 2(3):234–238. doi:10.1002/cssc.200800252

    CAS  Google Scholar 

  42. Wesselbaum S, Hintermair U, Leitner W (2012) Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew Chem 124:8713–8716. doi:10.1002/ange.201203185

    Google Scholar 

  43. Schaub T, Paciello RA (2011) A process for the synthesis of formic acid by CO2 hydrogenation: thermodynamic aspects and the role of CO. Angew Chem Int Ed 50(32):7278–7282. doi:10.1002/anie.201101292

    CAS  Google Scholar 

  44. Ogo S, Kabe R, Hayashi H, Harada R, Fukuzumi S (2006) Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. Dalton Trans 39:4657–4663. doi:10.1039/b607993h

    Google Scholar 

  45. Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K (2007) Simultaneous tuning of activity and water solubility of complex catalysts by acid–base equilibrium of ligands for conversion of carbon dioxide. Organometallics 26(3):702–712. doi:10.1021/om060899e712

    CAS  Google Scholar 

  46. Himeda Y, Miyazawa S, Hirose T (2011) Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 4(4):487–493. doi:10.1002/cssc.201000327

    CAS  Google Scholar 

  47. Himeda Y (2007) Conversion of CO2 into formate by homogeneously catalyzed hydrogenation in water: tuning catalytic activity and water solubility through the acid–base equilibrium of the ligand. Eur J Inorg Chem 25:3927–3941. doi:10.1002/ejic.200700494

    Google Scholar 

  48. Wang W-H, Hull JF, Muckerman JT, Fujita E, Himeda Y (2012) Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure. Energy Environ Sci 5:7923–7926

    Google Scholar 

  49. Wang W-H, Muckerman JT, Fujita E, Himeda Y (2013) Mechanistic insight through factors controlling effective hydrogenation of CO2 catalyzed by bioinspired proton-responsive iridium(III) complexes. ACS Catal 3(5):856–860. doi:10.1021/cs400172j

    CAS  Google Scholar 

  50. Hull JF, Himeda Y, Wang W-H, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4(5):383–388

    CAS  Google Scholar 

  51. Maenaka Y, Suenobu T, Fukuzumi S (2012) Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure. Energy Environ Sci 5(6):7360–7367. doi:10.1039/c2ee03315a

    CAS  Google Scholar 

  52. Fukuzumi S, Suenobu T (2013) Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Trans 42(1):18–28. doi:10.1039/c2dt31823g

    CAS  Google Scholar 

  53. Muller K, Sun Y, Heimermann A, Menges F, Niedner-Schatteburg G, van Wüllen C, Thiel WR (2013) Structure–reactivity relationships in the hydrogenation of carbon dioxide with ruthenium complexes bearing pyridinylazolato ligands. Chem Eur J 19:7825–7834. doi:10.1002/chem.201204199

    CAS  Google Scholar 

  54. Thai T-T, Therrien B, Suss-Fink G (2009) Arene ruthenium oxinato complexes: synthesis, molecular structure and catalytic activity for the hydrogenation of carbon dioxide in aqueous solution. J Organomet Chem 694(25):3973–3981. doi:10.1016/j.jorganchem.2009.09.008

    CAS  Google Scholar 

  55. Sanz S, Azua A, Peris E (2010) ‘([small eta]6-arene)Ru(bis-NHC)’ complexes for the reduction of CO2 to formate with hydrogen and by transfer hydrogenation with iPrOH. Dalton Trans 39(27):6339–6343. doi:10.1039/C003220D

    CAS  Google Scholar 

  56. Azua A, Sanz S, Peris E (2011) Water-soluble IrIII N-heterocyclic carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of aryl amines in water. Chem Eur J 17(14):3963–3967. doi:10.1002/chem.201002907

    CAS  Google Scholar 

  57. Albrecht M, van Koten G (2001) Platinum group organometallics based on “pincer” complexes: sensors, switches, and catalysts. Angew Chem Int Ed 40(20):3750–3781. doi:10.1002/1521-3773(20011015)40:20<3750::aid-anie3750>3.0.co;2-6

    CAS  Google Scholar 

  58. van der Boom ME, Milstein D (2003) Cyclometalated phosphine-based pincer complexes: mechanistic insight in catalysis, coordination, and bond activation. Chem Rev 103(5):1759–1792. doi:10.1021/cr960118r

    Google Scholar 

  59. Grützmacher H (2008) Cooperating ligands in catalysis. Angew Chem Int Ed 47(10):1814–1818. doi:10.1002/anie.200704654

    Google Scholar 

  60. van der Vlugt JI, Reek JNH (2009) Neutral tridentate PNP ligands and their hybrid analogues: versatile non-innocent scaffolds for homogeneous catalysis. Angew Chem Int Ed 48(47):8832–8846. doi:10.1002/anie.200903193

    Google Scholar 

  61. Musa S, Shaposhnikov I, Cohen S, Gelman D (2011) Ligand–metal cooperation in PCP pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem 123(15):3595–3599. doi:10.1002/ange.201007367

    Google Scholar 

  62. Federsel C, Jackstell R, Beller M (2010) State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew Chem Int Ed 49(36):6254–6257. doi:10.1002/anie.201000533

    CAS  Google Scholar 

  63. Nozaki K, Tanaka R, Yamashita M (2009) Catalytic hydrogenation of carbon dioxide using Ir(III) – pincer complexes. J Am Chem Soc 131(40):14168–14169. doi:10.1021/ja903574e

    Google Scholar 

  64. Yang X (2011) Hydrogenation of carbon dioxide catalyzed by PNP pincer iridium, iron, and cobalt complexes: a computational design of base metal catalysts. ACS Catal 1:849–854. doi:10.1021/cs2000329

    CAS  Google Scholar 

  65. Ahlquist MSG (2010) Iridium catalyzed hydrogenation of CO2 under basic conditions-mechanistic insight from theory. J Mol Catal A Chem 324(1–2):3–8. doi:10.1016/j.molcata.2010.02.018

    CAS  Google Scholar 

  66. Tanaka R, Yamashita M, Chung LW, Morokuma K, Nozaki K (2011) Mechanistic studies on the reversible hydrogenation of carbon dioxide catalyzed by an Ir-PNP complex. Organometallics 30(24):6742–6750. doi:10.1021/om2010172

    CAS  Google Scholar 

  67. Schmeier TJ, Dobereiner GE, Crabtree RH, Hazari N (2011) Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst. J Am Chem Soc 133(24):9274–9277. doi:10.1021/ja2035514

    CAS  Google Scholar 

  68. Vogt M, Rivada-Wheelaghan O, Iron MA, Leitus G, Diskin-Posner Y, Shimon LJW, Ben-David Y, Milstein D (2013) Anionic Nickel(II) complexes with doubly deprotonated PNP pincer-type ligands and their reactivity toward CO2. Organometallics 32(1):300–308. doi:10.1021/om3010838

    CAS  Google Scholar 

  69. Khaskin E, Diskin-Posner Y, Weiner L, Leitus G, Milstein D (2013) Formal loss of an H radical by a cobalt complex via metal-ligand cooperation. Chem Commun 49(27):2771–2773. doi:10.1039/C3CC39049G

    CAS  Google Scholar 

  70. Tai C-C, Chang T, Roller B, Jessop PG (2003) High-pressure combinatorial screening of homogeneous catalysts: hydrogenation of carbon dioxide. Inorg Chem 42(23):7340–7341. doi:10.1021/ic034881x

    CAS  Google Scholar 

  71. Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D (2011) Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew Chem Int Ed 50(42):9948–9952. doi:10.1002/anie.201104542

    CAS  Google Scholar 

  72. Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M (2010) A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew Chem Int Ed 49(50):9777–9780. doi:10.1002/anie.201004263

    CAS  Google Scholar 

  73. Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Catalytic hydrogenation of carbon dioxide and bicarbonates with a well-defined cobalt dihydrogen complex. Chem Eur J 18(1):72–75. doi:10.1002/chem.201101343

    CAS  Google Scholar 

  74. Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M (2012) Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J Am Chem Soc 134(51):20701–20704. doi:10.1021/ja307924a

    CAS  Google Scholar 

  75. Bianchini C, Peruzzini M, Zanobini F (1988) An exceptionally stable cis-(hydride)([eta]2-dihydrogen) complex of iron. J Organomet Chem 354(2):C19–C22. doi:10.1016/0022-328x(88)87057-8

    CAS  Google Scholar 

  76. Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. J Am Chem Soc. doi:10.1021/ja406601v

    Google Scholar 

  77. Jansen A, Pitter S (2004) Homogeneously catalysed reduction of carbon dioxide with silanes: a study on solvent and ligand effects and catalyst recycling. J Mol Catal A Chem 217(1–2):41–45, http://dx.doi.org/10.1016/j.molcata.2004.03.041

    CAS  Google Scholar 

  78. Deglmann P, Ember E, Hofmann P, Pitter S, Walter O (2007) Experimental and theoretical investigations on the catalytic hydrosilylation of carbon dioxide with ruthenium nitrile complexes. Chem Eur J 13(10):2864–2879. doi:10.1002/chem.200600396

    CAS  Google Scholar 

  79. Motokura K, Kashiwame D, Takahashi N, Miyaji A, Baba T (2013) Highly active and selective catalysis of copper diphosphine complexes for the transformation of carbon dioxide into silyl formate. Chem Eur J 19(30):10030–10037. doi:10.1002/chem.201300935

    CAS  Google Scholar 

  80. Lalrempuia R, Iglesias M, Polo V, Sanz Miguel PJ, Fernández-Alvarez FJ, Pérez-Torrente JJ, Oro LA (2012) Effective fixation of CO2 by iridium-catalyzed hydrosilylation. Angew Chem Int Ed 51(51):12824–12827. doi:10.1002/anie.201206165

    CAS  Google Scholar 

  81. Sattler W, Parkin G (2012) Zinc catalysts for on-demand hydrogen generation and carbon dioxide functionalization. J Am Chem Soc 134(42):17462–17465. doi:10.1021/ja308500s

    CAS  Google Scholar 

  82. Motokura K, Kashiwame D, Miyaji A, Baba T (2012) Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O. Org Lett 14(10):2642–2645. doi:10.1021/ol301034j

    CAS  Google Scholar 

  83. Zhang L, Cheng J, Hou Z (2013) Highly efficient catalytic hydrosilylation of carbon dioxide by an N-heterocyclic carbene copper catalyst. Chem Commun 49(42):4782–4784. doi:10.1039/C3CC41838C

    CAS  Google Scholar 

  84. Itagaki S, Yamaguchi K, Mizuno N (2013) Catalytic synthesis of silyl formates with 1 atm of CO2 and their utilization for synthesis of formyl compounds and formic acid. J Mol Catal A Chem 366:347–352, http://dx.doi.org/10.1016/j.molcata.2012.10.014

    CAS  Google Scholar 

  85. Schäfer A, Saak W, Haase D, Müller T (2012) Silyl cation mediated conversion of CO2 into benzoic acid, formic acid, and methanol. Angew Chem Int Ed 51(12):2981–2984. doi:10.1002/anie.201107958

    Google Scholar 

  86. Miller AJM, Labinger JA, Bercaw JE (2011) Trialkylborane-assisted CO2 reduction by late transition metal hydrides. Organometallics 30(16):4308–4314. doi:10.1021/om200364w

    CAS  Google Scholar 

  87. Shintani R, Nozaki K (2013) Copper-catalyzed hydroboration of carbon dioxide. Organometallics 32(8):2459–2462. doi:10.1021/om400175h

    CAS  Google Scholar 

  88. Stephan DW (2013) Catalysis: a step closer to a methanol economy. Nature 495(7439):54–55

    CAS  Google Scholar 

  89. Nielsen M, Alberico E, Baumann W, Drexler H-J, Junge H, Gladiali S, Beller M (2013) Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495(7439):85–89

    CAS  Google Scholar 

  90. (a) Surumpudi S, Narayanan SR, Vamos E, Frank HA, Halpert G, Prakash GKS, Olah GA, US Patent 6,248,460, 2001; (b) Surumpudi S, Narayanan SR, Vamos E, Frank HA, Halpert G, Olah GA, Prakash GKS, US Patent 6,444,343, 2002

    Google Scholar 

  91. Chang CD (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH, Weinheim, p 1894 and references therein

    Google Scholar 

  92. Huff CA, Sanford MS (2011) Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J Am Chem Soc 133(45):18122–18125. doi:10.1021/ja208760j

    CAS  Google Scholar 

  93. Huff CA, Kampf JW, Sanford MS (2012) Role of a noninnocent pincer ligand in the activation of CO2 at (PNN)Ru(H)(CO). Organometallics 31(13):4643–4645. doi:10.1021/om300403b

    CAS  Google Scholar 

  94. Vogt M, Gargir M, Iron MA, Diskin-Posner Y, Ben-David Y, Milstein D (2012) A new mode of activation of CO2 by metal–ligand cooperation with reversible C–C and M–O bond formation at ambient temperature. Chem Eur J 18(30):9194–9197. doi:10.1002/chem.201201730

    CAS  Google Scholar 

  95. Langer J, Fabra MJ, Garcia-Orduna P, Lahoz FJ, Oro LA (2008) A C-H activation-CO2-carboxylation reaction sequence mediated by an ‘Iridium(dppm)’ species. Formation of the anionic ligand (Ph2P)2C-COOH. Chem Commun 39:4822–4824

    Google Scholar 

  96. Wesselbaum S, vom Stein T, Klankermayer J, Leitner W (2012) Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium–phosphine catalyst. Angew Chem 124:7617–7620. doi:10.1002/ange.201202320

    Google Scholar 

  97. Balaraman E, Gunanathan C, Zhang J, Shimon LJW, Milstein D (2011) Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat Chem 3(8):609–614

    CAS  Google Scholar 

  98. Balaraman E, Ben-David Y, Milstein D (2011) Unprecedented catalytic hydrogenation of urea derivatives to amines and methanol. Angew Chem Int Ed 50(49):11702–11705. doi:10.1002/anie.201106612

    CAS  Google Scholar 

  99. Dixneuf PH (2011) Bifunctional catalysis: a bridge from CO2 to methanol. Nat Chem 3(8):578–579

    CAS  Google Scholar 

  100. Choudhury J (2012) New strategies for CO2-to-methanol conversion. ChemCatChem 4:609–611. doi:10.1002/cctc.201100495

    CAS  Google Scholar 

  101. Yang X (2012) Metal hydride and ligand proton transfer mechanism for the hydrogenation of dimethyl carbonate to methanol catalyzed by a pincer ruthenium complex. ACS Catal 2(6):964–970. doi:10.1021/cs3000683

    CAS  Google Scholar 

  102. Han Z, Rong L, Wu J, Zhang L, Wang Z, Ding K (2012) Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. Angew Chem Int Ed 51(52):13041–13045. doi:10.1002/anie.201207781

    CAS  Google Scholar 

  103. Li Y, Junge K, Beller M (2013) Improving the efficiency of the hydrogenation of carbonates and carbon dioxide to methanol. ChemCatChem 5(5):1072–1074. doi:10.1002/cctc.201300013

    CAS  Google Scholar 

  104. Miller AJM, Heinekey DM, Mayer JM, Goldberg KI (2013) Catalytic disproportionation of formic acid to generate methanol. Angew Chem 125(14):4073–4076. doi:10.1002/ange.201208470

    Google Scholar 

  105. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49(1):46–76. doi:10.1002/anie.200903708

    CAS  Google Scholar 

  106. Ashley AE, Thompson AL, O’Hare D (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48(52):9839–9843. doi:10.1002/anie.200905466

    CAS  Google Scholar 

  107. Ménard G, Stephan DW (2010) Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. J Am Chem Soc 132(6):1796–1797. doi:10.1021/ja9104792

    Google Scholar 

  108. Riduan SN, Zhang Y, Ying JY (2009) Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed 48(18):3322–3325. doi:10.1002/anie.200806058

    CAS  Google Scholar 

  109. Chakraborty S, Zhang J, Krause JA, Guan H (2010) An efficient nickel catalyst for the reduction of carbon dioxide with a borane. J Am Chem Soc 132(26):8872–8873. doi:10.1021/ja103982t

    CAS  Google Scholar 

  110. Huang F, Lu G, Zhao L, Li H, Wang Z-X (2010) The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: a computational mechanism study. J Am Chem Soc 132(35):12388–12396. doi:10.1021/ja103531z

    CAS  Google Scholar 

  111. Huang F, Zhang C, Jiang J, Wang Z-X, Guan H (2011) How does the nickel pincer complex catalyze the conversion of CO2 to a methanol derivative? A computational mechanistic study. Inorg Chem 50(8):3816–3825. doi:10.1021/ic200221a

    CAS  Google Scholar 

  112. Bontemps S, Vendier L, Sabo-Etienne S (2012) Borane-mediated carbon dioxide reduction at ruthenium: formation of C1 and C2 compounds. Angew Chem Int Ed 51(7):1671–1674. doi:10.1002/anie.201107352

    CAS  Google Scholar 

  113. Bontemps S, Sabo-Etienne S (2013) Trapping formaldehyde in the homogeneous catalytic reduction of carbon dioxide. Angew Chem Int Ed. doi:10.1002/anie.201304025

    Google Scholar 

  114. Sgro MJ, Stephan DW (2012) Frustrated Lewis pair inspired carbon dioxide reduction by a ruthenium tris(aminophosphine) complex. Angew Chem 124(45):11505–11507. doi:10.1002/ange.201205741

    Google Scholar 

  115. Courtemanche M-A, Légaré M-A, Maron L, Fontaine F-G (2013) A highly active phosphine–borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. J Am Chem Soc 135(25):9326–9329. doi:10.1021/ja404585p

    CAS  Google Scholar 

  116. Zimmerman PM, Zhang Z, Musgrave CB (2010) Simultaneous two-hydrogen transfer as a mechanism for efficient CO2 reduction. Inorg Chem 49(19):8724–8728. doi:10.1021/ic100454z

    CAS  Google Scholar 

  117. Khandelwal M, Wehmschulte RJ (2012) Deoxygenative reduction of carbon dioxide to methane, toluene, and diphenylmethane with [Et2Al]+ as catalyst. Angew Chem Int Ed 51(29):7323–7326. doi:10.1002/anie.201201282

    CAS  Google Scholar 

  118. Matsuo T, Kawaguchi H (2006) From carbon dioxide to methane: homogeneous reduction of carbon dioxide with hydrosilanes catalyzed by zirconium – borane complexes. J Am Chem Soc 128(38):12362–12363. doi:10.1021/ja0647250

    CAS  Google Scholar 

  119. Berkefeld A, Piers WE, Parvez M (2010) Tandem frustrated Lewis pair/Tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc 132(31):10660–10661. doi:10.1021/ja105320c

    CAS  Google Scholar 

  120. Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O (2013) Decamethylscandocinium-hydrido-(perfluorophenyl)borate: fixation and tandem tris(perfluorophenyl)borane catalysed deoxygenative hydrosilation of carbon dioxide. Chem Sci 4(5):2152–2162. doi:10.1039/C3SC50145K

    CAS  Google Scholar 

  121. Mitton SJ, Turculet L (2012) Mild reduction of carbon dioxide to methane with tertiary silanes catalyzed by platinum and palladium silyl pincer complexes. Chem Eur J 18(48):15258–15262. doi:10.1002/chem.201203226

    CAS  Google Scholar 

  122. Park S, Bézier D, Brookhart M (2012) An efficient iridium catalyst for reduction of carbon dioxide to methane with trialkylsilanes. J Am Chem Soc 134(28):11404–11407. doi:10.1021/ja305318c

    CAS  Google Scholar 

  123. Li Y, Fang X, Junge K, Beller M (2013) A general catalytic methylation of amines using carbon dioxide. Angew Chem Int Ed. doi:10.1002/anie.201301349

    Google Scholar 

  124. Jacquet O, Frogneux X, Das Neves Gomes C, Cantat T (2013) CO2 as a C1-building block for the catalytic methylation of amines. Chem Sci 4(5):2127–2131. doi:10.1039/C3SC22240C

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Beller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziebart, C., Beller, M. (2014). Hydrogenation and Related Reductions of Carbon Dioxide with Molecular Catalysts. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_4

Download citation

Publish with us

Policies and ethics