Skip to main content

Cerebral Glucose Metabolism

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

Glucose is the main substrate for energy metabolism of the brain, and the regional cerebral metabolic rate is directly related to regional brain activity. Therefore, the measurement of regional glucose metabolism is of great importance for the assessment of regional normal function and of pathological changes. Quantitation of glucose metabolism by PET is based on the 2-deoxyglucose method developed by Sokoloff and colleagues: F18-labelled deoxyglucose (FDG) is transported into the brain and phosphorylated, but cannot be further metabolised and therefore is accumulated intracellularly. The concentration of the tracer can be measured three dimensionally by PET, and together with the arterial tracer concentration, the kinetics of glucose uptake can be assessed and the regional cerebral metabolic rate of glucose (rCMRGlc) can be calculated.

rCMRGlc is high in cortex and grey matter structures and low in white matter, but there are significant differences among various regions. Metabolic rate is slightly reduced with ageing and changed by sleep, dream, and functional activation. CMRGlc is significantly affected in pathological states and the regional and global changes are important for assessing severity of disorders and for differential diagnosis of diseases of the brain. Therefore, FDG-PET has still great importance in brain research and many applications in clinical neurology.

Wolf-Dieter Heiss was supported by the WDH Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blomqvist G, Stone-Elander S, Halldin C, Roland PE, Widen L, Lindqvist M, Swahn CG, Langström B, Wiesel FA (1990) Positron emission tomographic measurements of cerebral glucose utilization using [1–11 C]D-glucose. J Cereb Blood Flow Metab 10(4):467–483

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S (2012) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53(1):59–71

    Article  CAS  PubMed  Google Scholar 

  • Catana C, Drzezga A, Heiss WD, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925

    Article  PubMed  Google Scholar 

  • Chetelat G, Landeau B, Salmon E, Yakushev I, Bahri MA, Mezenge F, Perrotin A, Bastin C, Manrique A, Scheurich A, Scheckenberger M, Desgranges B, Eustache F, Fellgiebel A (2013) Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. Neuroimage 76:167–177

    Article  PubMed  Google Scholar 

  • Chierichetti F, Pizzolato G (2012) F-18-Fdg-Pet/Ct. Q J Nucl Med Mol Imaging 56(2):138–150

    CAS  PubMed  Google Scholar 

  • Choo IH, Ni RQ, Scholl M, Wall A, Almkvist O, Nordberg A (2013) Combination of F-18-FDG PET and cerebrospinal fluid biomarkers as a better predictor of the progression to Alzheimer’s disease in mild cognitive impairment patients. J Alzheimers Dis 33(4):929–939

    CAS  PubMed  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, Fisher S (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 6th edn. Lippincott-Raven, Philadelphia, pp 637–669

    Google Scholar 

  • Drzezga A (2009) Diagnosis of Alzheimer’s disease with [18F]PET in mild and asymptomatic stages. Behav Neurol 21(1–2):101–115

    Article  PubMed  Google Scholar 

  • Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA, Manning RG, Cutler NR, Rapoport SI (1984) Human brain glucose utilization and cognitive function in relation to age. Ann Neurol 16:702–713

    Article  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1:37–51

    Article  CAS  PubMed  Google Scholar 

  • Heiss W-D (2009a) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36:105–112

    Article  Google Scholar 

  • Heiss W-D, Raab P, Lanfermann H (2011) Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med 52(10):1585–1600

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD (2009b) WSO Leadership in Stroke Medicine Award Lecture Vienna, September 26, 2008: functional imaging correlates to disturbance and recovery of language function. Int J Stroke 4(2):129–136

    Article  PubMed  Google Scholar 

  • Heiss WD, Habedank B, Klein JC, Herholz K, Wienhard K, Lenox M, Nutt R (2004) Metabolic rates in small brain nuclei determined by high-resolution PET. J Nucl Med 45(11):1811–1815

    PubMed  Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and CMR glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4(2):212–223

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, Wagner R, Wienhard K (1985) Regional cerebral glucose metabolism in man during wakefulness, sleep, and dreaming. Brain Res 327(1–2):362–366

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Zimmermann-Meinzingen S (2012) PET imaging in the differential diagnosis of vascular dementia. J Neurol Sci 322(1–2):268–273

    Article  PubMed  Google Scholar 

  • Herholz K, Herscovitch P, Heiss WD (2004) NeuroPET – positron emission tomography in neuroscience and clinical neurology. Springer, Berlin

    Google Scholar 

  • Herholz K, Langen KJ, Schiepers C, Mountz JM (2012) Brain tumors. Semin Nucl Med 42(6):356–370

    Article  PubMed  Google Scholar 

  • Hsieh TC, Lin WY, Ding HJ, Sun SS, Wu YC, Yen KY, Kao CH (2012) Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. J Neuroimaging 22(1):21–27

    Article  PubMed  Google Scholar 

  • Jones T, Rabiner EA, PET Research Advisory Company (2012) The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab 32(7):1426–1454

    Article  CAS  PubMed  Google Scholar 

  • Kalpouzos G, Chetelat G, Baron JC, Landeau B, Mevel K, Godeau C, Barre L, Constans JM, Viader F, Eustache F, Desgranges B (2009) Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 30(1):112–124

    Article  CAS  PubMed  Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27(4):476–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhl DE, Metter EJ, Riege WH, Phelps ME (1982) Effects of human aging on patterns of local cerebral glucose utilization determined by the (18F)fluorodeoxyglucose method. J Cereb Blood Flow Metab 2:163–171

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara H, Evans AC, Gjedde A (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurement with (18) fluorodeoxyglucose. J Cereb Blood Flow Metab 10:180–189

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, Attwell D (2001) The metabolic cost of neural information: from fly eye to mammalian cortex. In: Frackowiak RSJ, Magistretti PJ, Shulman RG, Altman JS, Adams M (eds) Neuroenergetics: relevance for functional brain imaging. HFSP – Workshop XI, Strasbourg, pp 54–64

    Google Scholar 

  • Magistretti PJ, Pellerin L, Martin J-L (1995) Brain energy metabolism: an integrated cellular perspective. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 657–670

    Google Scholar 

  • Mangold R, Sokoloff L, Conner E, Kleinerman J, Therman PO, Kety SS (1955) The effects of sleep and lack of sleep on the cerebral circulation and metabolism of normal young men. J Clin Invest 34(7, Part 1):1092–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98(12):6859–6864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770(1–2):192–201

    Article  CAS  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384(2):312–320

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood–brain barrier. J Neurochem 28(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Pawlik G, Heiss WD (1989) Positron emission tomography and neuropsychological function. In: Bigler ED, Yeo RA, Turkheimer E (eds) Neuropsychological function and brain imaging. Plenum Publ. Corp, New York, pp 65–138

    Chapter  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  CAS  PubMed  Google Scholar 

  • Phelps ME, Mazziotta JC, Kuhl DE (1981) Metabolic response of the brain to visual and auditory stimulation: studies in man. Stroke 12:122–122

    Google Scholar 

  • Portnow LH, Vaillancourt DE, Okun MS (2013) The history of cerebral PET scanning from physiology to cutting-edge technology. Neurology 80(10):952–956

    Article  PubMed  Google Scholar 

  • Raichle ME, Larson KB, Phelps ME, Grubb RL, Welch MJ, Ter-Pogossian MM (1975) In vivo measurement of brain glucose transport and metabolism employing glucose – 11 C. Am J Physiol 228:1936–1948

    CAS  PubMed  Google Scholar 

  • Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, Macgregor RR, Shiue CY, Atkins H, Anand A, Dann R, Greenberg JH (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for (18F) fluorodeoxyglucose and (11 C)deoxyglucose. J Cereb Blood Flow Metab 5:179–192

    Article  CAS  PubMed  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  CAS  PubMed  Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  • Silverman DHS, Melega WP (2003) Molecular imaging of biologic processes with PET: evaluation biologic bases of cerebral function. In: Phelps ME (ed) PET. Molecular imaging and its biological applications. Springer, New York, pp 509–583

    Google Scholar 

  • Sokoloff L (1989) Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, Molinoff P (eds) Basic neurochemistry: molecular, cellular, and medical aspects. Raven Press, New York

    Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14 C)-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A 107(41):17757–17762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5(1):115–125

    Article  CAS  PubMed  Google Scholar 

  • Wu HM, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME, Huang SC (2003) Measurement of the global lumped constant for 2-deoxy-2-[18F]fluoro-D-glucose in normal human brain using [15O]water and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging. A method with validation based on multiple methodologies. Mol Imaging Biol 5(1):32–41

    Article  PubMed  Google Scholar 

  • Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31(20):7477–7485

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, WD. (2014). Cerebral Glucose Metabolism. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics