Skip to main content

Current Radioligands for the PET Imaging of Metabotropic Glutamate Receptors

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

Glutamate receptors are divided into two main groups: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). Modulation of iGluRs and mGluRs has potential for the treatment of psychiatric and neurological diseases such as depression, anxiety, schizophrenia, and Parkinson’s disease. Positron emission tomography (PET) might offer the possibility to visualize glutamate receptors and presents an interesting tool for studying these receptors under physiologic and pathologic conditions. MGluR PET radioligands reported till April 2012 are outlined alongside their in vitro/in vivo properties and clinical applications. Emphasis is given to mGluR1 and mGluR5, two receptor subtypes for which most advances in radioligand development have been accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABP688:

3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enonemethyl-oxime

AMPA:

2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)-propionic acid

BBB:

Blood-brain barrier

B max :

Maximal binding capacity

BPND :

Binding potential relative to the no displaceable compartment

Bq:

Becquerel

BSA:

Bovine serum albumin

CAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

EOB:

End of bombardment

EOS:

End of synthesis

Et3N:

Triethylamine

GPCR:

G-protein-coupled receptor

HBD:

Hydrogen bond donors

HPLC:

High-pressure liquid chromatography

i.v:

Intravenous

IC50 :

Inhibition constant required for displacement of 50 % of radioligand binding

ID:

Injected dose

IDnorm./g:

Injected dose normalized to body weight per tissue weight

iGluR:

Ionotropic glutamate receptor

K d :

Dissociation constant

K i :

Inhibition constant

ko:

Knockout

LTP:

Long-term potentiation

MeI:

Methyl iodide

M-FPEP:

2-methyl-6-(3-fluoro-phenylethynyl)-pyridine

mGluR:

Metabotropic glutamate receptor

mGluR5:

Metabotropic glutamate receptor subtype 5

min:

Minute(s)

M-MPEP:

2-methyl-6-((methoxyphenyl)ethynyl)-pyridine

MPEP:

6-methyl-2-(phenylethynyl)-pyridine

MW:

Microwave

NAC:

N-acetylcysteine

NMDA:

N-methyl-d-aspartate

NMDAR:

N-methyl-d-aspartate receptor

p.i.:

Postinjection

PBS:

Phosphate buffered saline

PET:

Positron emission tomography

P-gp:

P-glycoprotein

PI:

Phosphoinositol

PLC:

Phospholipase C

ROI:

Region of interest

RT:

Room temperature

SAR:

Structure–activity relationship

SUV:

Standard uptake value

TAC:

Time activity curve

TEMPO:

2,2,6,6-tetramethylpiperidine-1-oxyl

THF:

Tetrahydrofuran

TM:

Transmembrane domain

TPSA:

Topological polar surface area

wt:

Wild-type

References

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor Mglur5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    CAS  PubMed  Google Scholar 

  • Ametamey SM, Kessler LJ, Honer M, Wyss MT, Buck A, Hintermann S, Auberson YP, Gasparini F, Schubiger PA (2006) Radiosynthesis and preclinical evaluation of C-11-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J Nucl Med 47:698–705

    CAS  PubMed  Google Scholar 

  • Ametamey SM, Treyer V, Streffer J, Wyss MT, Schmidt M, Blagoev M, Hintermann S, Auberson Y, Gasparini F, Fischer UC, Buck A (2007) Human PET studies of metabotropic glutamate receptor subtype 5 with C-11-ABP688. J Nucl Med 48:247–252

    CAS  PubMed  Google Scholar 

  • Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516

    CAS  PubMed  Google Scholar 

  • Anderson JJ, Bradbury MJ, Giracello DR, Chapman DF, Holtz G, Roppe J, King C, Cosford NDP, Varney MA (2003) In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [H-3]3-methoxy-5-(pyridin-2-ylethynyl)pyridine). Eur J Pharmacol 473:35–40

    CAS  PubMed  Google Scholar 

  • Annoura H, Fukunaga A, Uesugi M, Tatsuoka T, Horikawa Y (1996) A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylates. Bioorg Med Chem Lett 6:763–766

    CAS  Google Scholar 

  • Augelli-Szafran CE, Schwarz RD (2003) Metabotropic glutamate receptors: agonists, antagonists and allosteric modulators. Ann Rep Med Chem 38:21–30

    CAS  Google Scholar 

  • Baumann CA, Mu L, Johannsen S, Honer M, Schubiger PA, Ametamey SM (2010) Structure-activity relationships of fluorinated (E)-3-((6-methylpyridin-2-yl)ethynyl)cyclohex-2-enone-O-methyloxime (ABP688) derivatives and the discovery of a high affinity analogue as a potential candidate for imaging metabotropic glutamate receptors subtype 5 (mGluR5) with positron emission tomography (PET). J Med Chem 53:4009–4017

    CAS  PubMed  Google Scholar 

  • Bear MF (2005) Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain Behav 4:393–398

    CAS  PubMed  Google Scholar 

  • Belanger MJ, Krause SM, Ryan C, Sanabria-Bohorquez S, Li WP, Hamill TG, Burns HD (2008) Biodistribution and radiation dosimetry of [F-18]F-PEB in nonhuman primates. Nucl Med Commun 29:915–919

    PubMed  Google Scholar 

  • Bettler B, Mulle C (1995) Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 34:123–139

    CAS  PubMed  Google Scholar 

  • Bradley SR, Marino MJ, Wittmann M, Rouse ST, Awad H, Levey AI, Conn PJ (2000) Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J Neurosci 20:3085–3094

    CAS  PubMed  Google Scholar 

  • Braun A, Hammerle S, Suda K, Rothen-Rutishauser B, Gunthert M, Kramer SD, Wunderli-Allenspach H (2000) Cell cultures as tools in biopharmacy. Eur J Pharmaceut Sci 11(Suppl 2):S51–S60

    CAS  Google Scholar 

  • Brocke KS, Staufner C, Luksch H, Geiger KD, Stepulak A, Marzahn J, Schackert G, Temme A, Ikonomidou C (2010) Glutamate receptors in pediatric tumors of the central nervous system. Cancer Biol Ther 9:455–468

    CAS  PubMed  Google Scholar 

  • Brown AK, Kimura Y, Zoghbi SS, Simeon FG, Liow J-S, Kreisl WC, Tau A, Fujita M, Pike VW, Innis RB (2008) Metabotropic glutamate subtype 5 receptors are quantified in the human brain with a novel radioligand for PET. J Nucl Med 49:2042–2048

    PubMed Central  PubMed  Google Scholar 

  • Cai LS, Lu SY, Pike VW (2008) Chemistry with [F-18]fluoride ion. Eur J Org Chem 17:2853–2873

    Google Scholar 

  • Carroll FI (2008) Antagonists at metabotropic glutamate receptor subtype 5 structure activity relationships and therapeutic potential for addiction. Addiction Reviews 1141:221–232

    CAS  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    CAS  PubMed  Google Scholar 

  • Celen S, Koole M, Alcazar J, De Angelis M, Schmidt M, Van Laere K, Verbruggen A, Langlois X, Andres JI, Bormans G (2012) Preliminary biological evaluation of [11C]JNJ42491293 as a radioligand for PET imaging of mGluR2 in brain. J Nucl Med 53(Suppl 1):286

    Google Scholar 

  • Chen YL, Conn PJ (2008) MGluR(5) positive allosteric modulators. Drug Future 33:355–360

    CAS  Google Scholar 

  • Choi KY, Chang K, Pickel JM, Badger JD 2nd, Roche KW (2011) Expression of the metabotropic glutamate receptor 5 (mGluR5) induces melanoma in transgenic mice. Proc Natl Acad Sci U S A 108:15219–15224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chua PC, Nagasawa JY, Bleicher LS, Munoz B, Schweiger EJ, Tehrani L, Anderson JJ, Cramer M, Chung J, Green MD, King CD, Reyes-Manalo G, Cosford NDP (2005) Cyclohexenyl- and dehydropiperidinyl-alkynyl pyridines as potent metabotropic glutamate subtype 5 (mGlu5) receptor antagonists. Bioorg Med Chem Lett 15:4589–4593

    CAS  PubMed  Google Scholar 

  • Clark DE (2003) In silico prediction of blood-brain barrier permeation. Drug Discov Today 8:927–933

    CAS  PubMed  Google Scholar 

  • Cosford NDP, Tehrani L, Arruda J, King C, McDonald IA, Munoz B, Roppe J, Anderson E, Bristow L, Brodkin J, Rao S, Siegel R, Tattersall D, Washburn M, Prasit P, Varney M (2002) 3-[(2-methyl-1,3-thiazol4-yl)etrynyl]pyridine (MTEP): design and synthesis of a potent and highly selective metabotropic glutamate subtype 5 (mGlu5) receptor antagonist with anxiolytic activity. Neuropharmacology 43:282–283

    Google Scholar 

  • Cosford NDP, Roppe J, Tehrani L, Schweiger EJ, Seiders TJ, Chaudary A, Rao S, Varney MA (2003a) [H-3]-methoxymethyl-MTEP and [H-3]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett 13:351–354

    CAS  PubMed  Google Scholar 

  • Cosford NDP, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang XH, McDonald I, Rao S, Washburn M, Varney MA (2003b) 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 46:204–206

    CAS  PubMed  Google Scholar 

  • DeLorenzo C, Kumar JSD, Mann JJ, Parsey RV (2011a) In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [(11)C]ABP688. J Cereb Blood Flow Metab 31:2169–2180

    CAS  PubMed  Google Scholar 

  • DeLorenzo C, Milak MS, Brennan KG, Kumar JSD, Mann JJ, Parsey RV (2011b) In vivo positron emission tomography imaging with [(11)C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur J Nucl Med Mol Imaging 38:1083–1094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, Burger C, Auberson YP, Sovago J, Stockmeier CA, Buck A, Hasler G (2011) Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatry 168:727–734

    PubMed Central  PubMed  Google Scholar 

  • Eckelman WC, Mathis CA (2006b) Targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:161–164

    CAS  PubMed  Google Scholar 

  • Eckelman WC, Kilbourn MR, Mathis CA (2006) Discussion of targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:449–451

    CAS  PubMed  Google Scholar 

  • Elmenhorst D, Aliaga A, Bauer A, Rosa-Neto P (2012) Test-retest stability of cerebral mGluR(5) quantification using [(11) C]ABP688 and positron emission tomography in rats. Synapse 66:552–560

    CAS  PubMed  Google Scholar 

  • Emmitte KA (2011) Recent advances in the design and development of novel negative allosteric modulators of mGlu(5). ACS Chem Neurosci 2:411–432

    CAS  PubMed  Google Scholar 

  • Fotuhi M, Sharp AH, Glatt CE, Hwang PM, von Krosigk M, Snyder SH, Dawson TM (1993) Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain. J Neurosci 13:2001–2012

    CAS  PubMed  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Ding YS, Dewey SL (1999) PET and drug research and development. J Nucl Med 40:1154–1163

    CAS  PubMed  Google Scholar 

  • French AN, Napolitano E, VanBrocklin HF, Hanson RN, Welch MJ, Katzenellenbogen JA (1993) Synthesis, radiolabeling and tissue distribution of 11 beta-fluoroalkyl- and 11 beta-fluoroalkoxy-substituted estrogens: target tissue uptake selectivity and defluorination of a homologous series of fluorine-18-labeled estrogens. Nucl Med Biol 20:31–47

    CAS  PubMed  Google Scholar 

  • Fujinaga M, Yamasaki T, Kawamura K, Kumata K, Hatori A, Yui J, Yanamoto K, Yoshida Y, Ogawa M, Nengaki N, Maeda J, Fukumura T, Zhang MR (2011) Synthesis and evaluation of 6-[1-(2-[(18)F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline for positron emission tomography imaging of the metabotropic glutamate receptor type 1 in brain. Bioorg Med Chem 19:102–110

    CAS  PubMed  Google Scholar 

  • Fujinaga M, Maeda J, Yui J, Hatori A, Yamasaki T, Kawamura K, Kumata K, Yoshida Y, Nagai Y, Higuchi M, Suhara T, Fukumura T, Zhang MR (2012a) Characterization of 1-(2-[(18) F]fluoro-3-pyridyl)-4-(2-isopropyl-1-oxo- isoindoline-5-yl)-5-methyl-1H-1,2,3-triazole, a PET ligand for imaging the metabotropic glutamate receptor type 1 in rat and monkey brains. J Neurochem 121:115–124

    CAS  PubMed  Google Scholar 

  • Fujinaga M, Yamasaki T, Yui J, Hatori A, Xie L, Kawamura K, Asagawa C, Kumata K, Yoshida Y, Ogawa M, Nengaki N, Fukumura T, Zhang MR (2012b) Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain. J Med Chem 55:2342–2352

    CAS  PubMed  Google Scholar 

  • Gasparini F, Lingenhoehl K, Flor PJ, Stoehr N, Stierlin C, Heinrich M, Vranesic I, Allgeier H, Biollaz M, Heckendorn R, Urwyler S, Schmutz M, Spooren W, Varney MA, Johnson EC, Hess SD, Sakaan A, Santori E, Velicelebi G, Kuhn R (1999) Discovery of 2-methyl-6-(phenylethynyl)-pyridine (MPEP): a highly potent and selective mGluR5 antagonist. Neuropharmacology 38:52

    Google Scholar 

  • Gasparini F, Andres H, Flor PJ, Heinrich M, Inderbitzin W, Lingenhohl K, Muller H, Munk VC, Omilusik K, Stierlin C, Stoehr N, Vranesic I, Kuhn R (2002) [H-3]-M-MPEP, a potent, subtype-selective radioligand for the metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 12:407–409

    CAS  PubMed  Google Scholar 

  • Gasparini F, Bilbe G, Gomez-Mancilla B, Spooren W (2008) mGluR5 antagonists: discovery, characterization and drug development. Curr Opin Drug Discov Devel 11:655–665

    CAS  PubMed  Google Scholar 

  • Gereau RW, Conn PJ (1995) Roles of specific metabotropic glutamate-receptor subtypes in regulation of hippocampal Ca1 pyramidal cell excitability. J Neurophysiol 74:122–129

    CAS  PubMed  Google Scholar 

  • Gupta DS, McCullumsmith GE, Beneyto M, Haroutunian V, Davis KL, Meador-Woodruff JH (2005) Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 57:123–131

    CAS  PubMed  Google Scholar 

  • Hamill TG, Seiders TJ, Krause S, Ryan C, Sanabria S, Gibson RE, Patel S, Cosford NDP, Roppe J, Yang J, King C, Hargreaves RJ, Burns HD (2003) The synthesis and characterization of mGluR5 receptor PET ligands. J Labelled Compd Rad 46:S184

    Google Scholar 

  • Hamill TG, Krause S, Ryan C, Bonnefous C, Govek S, Seiders TJ, Cosford NDP, Roppe J, Kamenecka T, Patel S, Gibson RE, Sanabria S, Riffel K, Eng WS, King C, Yang XQ, Green MD, O'Malley SS, Hargreaves R, Burns HD (2005) Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse 56:205–216

    CAS  PubMed  Google Scholar 

  • Honer M, Stoffel A, Kessler LJ, Schubiger PA, Ametamey SM (2007) Radiolabeling and in vitro and in vivo evaluation of [F-18]-FE-DABP688 as a PET radioligand for the metabotropic glutamate receptor subtype 5. Nucl Med Biol 34:973–980

    CAS  PubMed  Google Scholar 

  • Horio M, Chin KV, Currier SJ, Goldenberg S, Williams C, Pastan I, Gottesman MM, Handler J (1989) Trans-epithelial transport of drugs by the multidrug transporter in cultured Madin-Darby canine kidney-cell epithelia. J Biol Chem 264:14880–14884

    CAS  PubMed  Google Scholar 

  • Hostetler ED, Burns HD (2003) An improved synthesis of substituted [C-11]toluenes via Suzuki coupling with [C-11]methyl iodide. J Labelled Compd Rad 46:S75

    Google Scholar 

  • Hostetler ED, Eng W, Joshi AD, Sanabria-Bohorquez S, Kawamoto H, Ito S, O'Malley S, Krause S, Ryan C, Patel S, Williams M, Riffel K, Suzuki G, Ozaki S, Ohta H, Cook J, Burns HD, Hargreaves R (2011) Synthesis, characterization, and monkey PET studies of [(18)F]MK-1312, a PET tracer for quantification of mGluR1 receptor occupancy by MK-5435. Synapse 65:125–135

    CAS  PubMed  Google Scholar 

  • Huang YY, Narendran R, Bischoff F, Guo NN, Zhu ZH, Bae SA, Lesage AS, Laruelle M (2005) A positron emission tomography radioligand for the in vivo labeling of metabotropic glutamate 1 receptor: (3-ethyl-2-[C-11]methyl-6-quinolinyl) (cis-4-methoxycyclohexyl)methanone. J Med Chem 48:5096–5099

    CAS  PubMed  Google Scholar 

  • Ito S, Hirata Y, Nagatomi Y, Satoh A, Suzuki G, Kimura T, Satow A, Maehara S, Hikichi H, Hata M, Ohta H, Kawamoto H (2009) Discovery and biological profile of isoindolinone derivatives as novel metabotropic glutamate receptor 1 antagonists: a potential treatment for psychotic disorders. Bioorg Med Chem Lett 19:5310–5313

    CAS  PubMed  Google Scholar 

  • Jaeschke G, Wettstein JG, Nordquist RE, Spooren W (2008) mGlu5 receptor antagonists and their therapeutic potential. Expert Opin Ther Pat 18:123–142

    CAS  Google Scholar 

  • Kessler LJ (2004) Development of novel ligands for PET imaging of metabotropic glutamate receptor subtype 5 (mGLuR5). Dissertation No 15633, ETH-Zürich

    Google Scholar 

  • Kimura Y, Simeon FG, Hatazawa J, Mozley PD, Pike VW, Innis RB, Fujita M (2010) Biodistribution and radiation dosimetry of a positron emission tomographic ligand, (18)F-SP203, to image metabotropic glutamate subtype 5 receptors in humans. Eur J Nucl Med Mol Imaging 37:1943–1949

    PubMed Central  PubMed  Google Scholar 

  • Kimura Y, Simeon FG, Zoghbi SS, Zhang Y, Hatazawa J, Pike VW, Innis RB, Fujita M (2012) Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203. Neuroimage 59:2124–2130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohara A, Toya T, Tamura S, Watabiki T, Nagakura Y, Shitaka Y, Hayashibe S, Kawabata S, Okada M (2005) Radioligand binding properties and pharmacological characterization of 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a] benzimidazole-2-carboxamide (YM-298198), a high-affinity, selective, and noncompetitive antagonist of metabotropic glutamate receptor type 1. J Pharmacol Exp Ther 315:163–169

    CAS  PubMed  Google Scholar 

  • Kohara A, Takahashi M, Yatsugi S, Tamura S, Shitaka Y, Hayashibe S, Kawabata S, Okada M (2008) Neuroprotective effects of the selective type 1 metabotropic glutamate receptor antagonist YM-202074 in rat stroke models. Brain Res 1191:168–179

    CAS  PubMed  Google Scholar 

  • Kokic M, Honer M, Ametamey SM, Gasparini F, Andres H, Bischoff F, Flor PJ, Heinrich M, Vranesic I, Spooren W, Kuhn R, Schubiger PA (2001) Radiolabeling and in vivo evaluation of 11C-M-MPEP as a PET radioligand for the imaging of the metabotropic glutamate receptor 5 (MGluR5). J Labelled Compd Rad 44:S231–S232

    Google Scholar 

  • Krause SM, Hamill TG, Seiders TJ, Ryan C, Sanabria S, Gibson RE, Patel S, Cosford NDP, Roppe JR, Hargreaves RJ, Burns HD (2003) In vivo characterization of PET ligands for the mGluR5 receptor in rhesus monkey. Mol Imaging Biol 5:166

    Google Scholar 

  • Kulkarni SS, Zou MF, Cao JJ, Deschamps JR, Rodriguez AL, Conn PJ, Newman AH (2009) Structure-activity relationships comparing N-(6-methylpyridin-yl)-substituted aryl amides to 2-methyl-6-(substituted-arylethynyl)pyridines or 2-methyl-4-(substituted-arylethynyl)thiazoles as novel metabotropic glutamate receptor subtype 5 antagonists. J Med Chem 52:3563–3575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lancelot S, Zimmer L (2010) Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci 31:411–417

    CAS  PubMed  Google Scholar 

  • Lavreysen H, Pereira SN, Leysen JE, Langlois X, Lesage AS (2004a) Metabotropic glutamate 1 receptor distribution and occupancy in the rat brain: a quantitative autoradiographic study using [3H]R214127. Neuropharmacology 46:609–619

    CAS  PubMed  Google Scholar 

  • Lavreysen H, Wouters R, Bischoff F, Nobrega Pereira S, Langlois X, Blokland S, Somers M, Dillen L, Lesage AS (2004b) JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology 47:961–972

    CAS  PubMed  Google Scholar 

  • Lea PM, Faden AI (2006) Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev 12:149–166

    CAS  PubMed  Google Scholar 

  • Lee B, Kim YK, Jeong J, Lee YS, Lee JY, Lee JS, Lee DS, Chung JK, Lee M (2012) Study of a novel PET tracer for type 1 metabotropic glutamate receptor (mGluR1) imaging in brain. J Nucl Med 53(Suppl 1):400

    Google Scholar 

  • Li Z, Conti PS (2010) Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev 62:1031–1051

    CAS  PubMed  Google Scholar 

  • Lindemann L, Jaeschke G, Michalon A, Vieira E, Honer M, Spooren W, Porter R, Hartung T, Kolczewski S, Buttelmann B, Flament C, Diener C, Fischer C, Gatti S, Prinssen EP, Parrott N, Hoffmann G, Wettstein JG (2011) CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J Pharmacol Exp Ther 339:474–486

    CAS  PubMed  Google Scholar 

  • Lindsley CW, Emmitte KA (2009) Recent progress in the discovery and development of negative allosteric modulators of mGluR5. Curr Opin Drug Discov Dev 12:446–457

    CAS  Google Scholar 

  • Lucatelli C, Honer M, Salazar JF, Ross TL, Schubiger PA, Ametamey SM (2009) Synthesis, radiolabeling, in vitro and in vivo evaluation of [F-18]-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5. Nucl Med Biol 36:613–622

    CAS  PubMed  Google Scholar 

  • Miller PW, Long NJ, Vilar R, Gee AD (2008) Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem 47:8998–9033

    CAS  Google Scholar 

  • Miyake N, Skinbjerg M, Easwaramoorthy B, Kumar D, Girgis RR, Xu XY, Slifstein M, Abi-Dargham A (2011) Imaging changes in glutamate transmission in vivo with the metabotropic glutamate receptor 5 tracer [(11)C] ABP688 and N-acetylcysteine challenge. Biol Psychiatry 69:822–824

    CAS  PubMed  Google Scholar 

  • Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237

    CAS  PubMed  Google Scholar 

  • Mu L, Schubiger PA, Ametamey SM (2010) Radioligands for the PET imaging of metabotropic glutamate receptor subtype 5 (mGluR5). Curr Top Med Chem 10:1558–1568

    CAS  PubMed  Google Scholar 

  • Myers R (2001) The biological application of small animal PET imaging. Nucl Med Biol 28:585–593

    CAS  PubMed  Google Scholar 

  • Neugebauer V (2002) Metabotropic glutamate receptors–important modulators of nociception and pain behavior. Pain 98:1–8

    CAS  PubMed  Google Scholar 

  • Ohe T, Sato M, Tanaka S, Fujino N, Hata M, Shibata Y, Kanatani A, Fukami T, Yamazaki M, Chiba M, Ishii Y (2003) Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid/plasma concentration ratio. Drug Metab Dispos 31:1251–1254

    CAS  PubMed  Google Scholar 

  • Ohgami M, Haradahira T, Takai N, Zhang M, Kawamura K, Yamasaki T, Yanagimoto K (2009) [18F]FTIDC: a new PET radioligand for metabotropic glutamate receptor 1. Eur J Nucl Med Mol Imaging 36:S310

    Google Scholar 

  • Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res 56:207–217

    CAS  PubMed  Google Scholar 

  • Ono M, Ohgami M, Haratake M, Saji H, Nakayama M (2012) A novel bifunctional chelating agent based on bis(hydroxamamide) for 99mTc labeling of polypeptides. J Labelled Comp Rad 55:71–79

    CAS  Google Scholar 

  • Palucha A, Branski P, Szewczyk B, Wieronska JM, Klak K, Pilc A (2005) Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol Biochem Behav 81:901–906

    CAS  PubMed  Google Scholar 

  • Parmentier ML, Galvez T, Acher F, Peyre B, Pellicciari R, Grau Y, Bockaert J, Pin JP (2000) Conservation of the ligand recognition site of metabotropic glutamate receptors during evolution. Neuropharmacology 39:1119–1131

    CAS  PubMed  Google Scholar 

  • Passchier J, Gee A, Willemsen A, Vaalburg W, van Waarde A (2002) Measuring drug-related receptor occupancy with positron emission tomography. Methods 27:278–286

    CAS  PubMed  Google Scholar 

  • Patel S, Gibson R (2008) In vivo site-directed radiotracers: a mini-review. Nucl Med Biol 35:805–815

    CAS  PubMed  Google Scholar 

  • Patel S, Krause SM, Hamill T, Chaudhary A, Burns DH, Gibson RA (2003) In vitro characterization of [H-3]MethoxyPyEP, an mGluR5 selective radioligand. Life Sci 73:371–379

    CAS  PubMed  Google Scholar 

  • Patel S, Ndubizu O, Hamill T, Chaudhary A, Burns HD, Hargreaves R, Gibson RE (2005) Screening cascade and development of potential positron emission tomography radiotracers for mGluR5: in vitro and in vivo characterization. Mol Imaging Biol 7:314–323

    PubMed  Google Scholar 

  • Patel S, Hamill TG, Connolly B, Jagoda E, Li W, Gibson RE (2007) Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [F-18]F-PEB. Nucl Med Biol 34:1009–1017

    CAS  PubMed  Google Scholar 

  • Pietraszek M, Nagel J, Gravius A, Schafer D, Danysz W (2007) The role of group I metabotropic glutamate receptors in schizophrenia. Amino Acids 32:173–178

    CAS  PubMed  Google Scholar 

  • Pike VW (2009) PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 30:431–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter RHP, Jaeschke G, Spooren W, Ballard TM, Buttelmann B, Kolczewski S, Peters JU, Prinssen E, Wichmann J, Vieira E, Muhlemann A, Gatti S, Mutel V, Malherbe P (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 315:711–721

    CAS  PubMed  Google Scholar 

  • Prabhakaran J, Majo VJ, Milak MS, Kassir SA, Palner M, Savenkova L, Mali P, Arango V, Mann JJ, Parsey RV, Kumar JSD (2010) Synthesis, in vitro and in vivo evaluation of [(11)C]MMTP: a potential PET ligand for mGluR1 receptors. Bioorg Med Chem Lett 20:3499–3501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritzen A, Mathiesen JM, Thomsen C (2005) Molecular pharmacology and therapeutic prospects of metabotropic glutamate receptor allosteric modulators. Basic Clin Pharmacol Toxicol 97:202–213

    CAS  PubMed  Google Scholar 

  • Ritzen A, Sindet R, Hentzer M, Svendsen N, Brodbeck RM, Bundgaard C (2009) Discovery of a potent and brain penetrant mGluR5 positive allosteric modulator. Bioorg Med Chem Lett 19:3275–3278

    CAS  PubMed  Google Scholar 

  • Romano C, Sesma MA, Mcdonald CT, Omalley K, Vandenpol AN, Olney JW (1995) Distribution of Metabotropic Glutamate-Receptor Mglur5 Immunoreactivity in Rat-Brain. J Comp Neurol 355:455–469

    CAS  PubMed  Google Scholar 

  • Romano C, Yang WL, O Malle KL (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271:28612–28616

    CAS  PubMed  Google Scholar 

  • Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88:427–435

    CAS  PubMed  Google Scholar 

  • Sanchez-Pernaute R, Wang JQ, Kuruppu D, Cao L, Tueckmantel W, Kozikowski A, Isacson O, Brownell AL (2008) Enhanced binding of metabotropic glutamate receptor type 5 (mGluR5) PET tracers in the brain of Parkinsonian primates. Neuroimage 42:248–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh A, Nagatomi Y, Hirata Y, Ito S, Suzuki G, Kimura T, Maehara S, Hikichi H, Satow A, Hata M, Ohta H, Kawamoto H (2009) Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg Med Chem Lett 19:5464–5468

    CAS  PubMed  Google Scholar 

  • Schkeryantz JM, Kingston AE, Johnson MP (2007) Prospects for metabotropic glutamate 1 receptor antagonists in the treatment of neuropathic pain. J Med Chem 50:2563–2568

    CAS  PubMed  Google Scholar 

  • Schubiger PA, Lehmann L, Friebe M (2007) PET chemistry: the driving force in molecular imaging. Springer, Berlin/New York

    Google Scholar 

  • Sephton Milicevic S, Dennler P, Leutwiler DS, Mu L, Wanger-Baumann CA, Schibli R, Krämer SD, Ametamey SM (2012) Synthesis, radiolabelling and in vitro and in vivo evaluation of a novel fluorinated ABP688 derivative for the PET imaging of metabotropic glutamate receptor subtype 5. Am J Nucl Med Mol Imaging 2:14–28

    Google Scholar 

  • Severance AJ, Parsey RV, Kumar JSD, Underwood MD, Arango V, Majoa VJ, Prabhakaran J, Simpson NR, Van Heertum RL, Mann JJ (2006) In vitro and in vivo evaluation of [C-11]MPEPy as a potential PET ligand for mGlu(5) receptors. Nucl Med Biol 33:1021–1027

    CAS  PubMed  Google Scholar 

  • Shetty HU, Zoghbi SS, Simeon FG, Liow JS, Brown AK, Kannan P, Innis RB, Pike VW (2008) Radiodefluorination of 3-fluoro-5-(2-(2-[F-18](fluoromethyl)-thiazol-4-yl) ethynyl)benzonitrile ([F-18]SP203), a radioligand for imaging brain metabotropic glutamate subtype-5 receptors with positron emission tomography, occurs by glutathionylation in rat brain. J Pharmacol Exp Ther 327:727–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    CAS  PubMed  Google Scholar 

  • Shin SS, Martino JJ, Chen S (2008) Metabotropic glutamate receptors (mGlus) and cellular transformation. Neuropharmacology 55:396–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simeon FG, Brown AK, Zoghbi SS, Patterson VM, Innis RB, Pike VW (2007) Synthesis and simple F-18-labeling of 3-fluoro-5-(2-(2-(fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile as a high affinity radioligand for imaging monkey brain metabotropic glutamate subtype-5 receptors with positron emission tomography. J Med Chem 50:3256–3266

    CAS  PubMed  Google Scholar 

  • Spooren W, Gasparini F (2004) MGluS receptor antagonists: a novel class of anxiolytics? Drug News Perspect 17:251–257

    CAS  PubMed  Google Scholar 

  • Spooren WPJM, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295:1267–1275

    CAS  PubMed  Google Scholar 

  • Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R (2003) Insight into the function of group I and group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 14:257–277

    CAS  PubMed  Google Scholar 

  • Suzuki M, Doi H, Bjorkman M, Andersson Y, Langstrom B, Watanabe Y, Noyori R (1997) Rapid coupling of methyl iodide with aryltributylstannanes mediated by palladium(0) complexes: a general protocol for the synthesis of (CH3)-C-11-labeled PET tracers. Chem-Eur J 3:2039–2042

    CAS  Google Scholar 

  • Suzuki G, Kimura T, Satow A, Kaneko N, Fukuda J, Hikichi H, Sakai N, Maehara S, Kawagoe-Takaki H, Hata M, Azuma T, Ito S, Kawamoto H, Ohta H (2007) Pharmacological characterization of a new, orally active and potent allosteric metabotropic glutamate receptor 1 antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl- 3,6-dihydropyridine-1(2H)-carboxamide (FTIDC). J Pharmacol Exp Ther 321:1144–1153

    CAS  PubMed  Google Scholar 

  • Suzuki G, Kawagoe-Takaki H, Inoue T, Kimura T, Hikichi H, Murai T, Satow A, Hata M, Maehara S, Ito S, Kawamoto H, Ozaki S, Ohta H (2009) Correlation of receptor occupancy of metabotropic glutamate receptor subtype 1 (mGluR1) in mouse brain with in vivo activity of allosteric mGluR1 antagonists. J Pharmacol Sci 110:315–325

    CAS  PubMed  Google Scholar 

  • Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4:131–144

    CAS  PubMed  Google Scholar 

  • Szydlowska K, Kaminska B, Baude A, Parsons CG, Danysz W (2007) Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo. Eur J Pharmacol 554:18–29

    CAS  PubMed  Google Scholar 

  • Talbot PS, Laruelle M (2002) The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 12:503–511

    CAS  PubMed  Google Scholar 

  • Tamagnan GD, Batis J, Koren AO, Lee H, Alagille D, Jennings D, Russell D, Carson R, Marek K, Seibyl JP (2009) Initial human studies of [18]-FPEB, a selective metabotropic glutamate receptor 5. Eur J Nucl Med Mol Imaging 36(Suppl 2):S223

    Google Scholar 

  • Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132:1423–1430

    CAS  PubMed  Google Scholar 

  • Tavares AA, Lewsey J, Dewar D, Pimlott SL (2012) Radiotracer properties determined by high performance liquid chromatography: a potential tool for brain radiotracer discovery. Nucl Med Biol 39:127–135

    CAS  PubMed  Google Scholar 

  • Telu S, Chun J, Simeon FG, Lu S, Pike VW (2011) Syntheses of an mGlurR5 PET radioligands through the radiofluorination of a diaryliodonium tosylates. Org Biomol Chem 9:6629–6638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology 40:311–318

    CAS  PubMed  Google Scholar 

  • Treyer V, Streffer J, Ametamey SM, Bettio A, Blauenstein P, Schmidt M, Gasparini F, Fischer U, Hock C, Buck A (2008) Radiation dosimetry and biodistribution of 11C-ABP688 measured in healthy volunteers. Eur J Nucl Med Mol Imaging 35:766–770

    CAS  PubMed  Google Scholar 

  • Tsai VWW, Scott HL, Lewis RJ, Dodd PR (2005) The role of group I metabotropic glutamate receptor’s in neuronal excitotoxicity in Alzheimer’s disease. Neurotox Res 7:125–141

    CAS  PubMed  Google Scholar 

  • Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K (2002) Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci U S A 99:2660–2665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Laere K, Koole M, de Hoon J, Van Hecken A, Langlois X, Andres JI, Bormans G, Schmidt M (2012) Biodistribution, dosimetry and kinetic modeling of [11C]JNJ-42491293, a PET tracer for the mGluR2 receptor in the human brain. J Nucl Med 53(Suppl 1):355

    Google Scholar 

  • Varney M, Anderson J, Bradbury M, Bristow L, Brodkin J, Giracello D, Jachec C, Holtz G, Prasit P, Rao S, Chapman D, Cosford NDP (2002) 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP): a potent and highly selective metabotropic glutamate subtype 5 (mGlu5) receptor antagonist with anxiolytic activity. Neuropharmacology 43:311–311

    Google Scholar 

  • Wager TT, Hou XJ, Verhoest PR, Villalobos A (2010) Moving beyond rules: the development of a central nervous system multi-parameter optimization (CNS MPO) approach to enable alignment of drug-like properties. ACS Chem Neurosci 1(6):435–449

    Google Scholar 

  • Wager TT, Villalobos A, Verhoest PR, Hou X, Shaffer CL (2011) Strategies to optimize the brain availability of central nervous system drug candidates. Exp Opin Drug Discov 6:371–381

    CAS  Google Scholar 

  • Wang JQ, Tueckmantel W, Zhu AJ, Pellegrino D, Brownell AL (2007) Synthesis and preliminary biological evaluation of 3-[F-18]fluoro-5-(2-pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5. Synapse 61:951–961

    CAS  PubMed  Google Scholar 

  • Wang JQ, Zhang Z, Kuruppu D, Brownell AL (2012) Radiosynthesis of PET radiotracer as a prodrug for imaging group II metabotropic glutamate receptors in vivo. Bioorg Med Chem Lett 22:1958–1962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wanger-Baumann CA, Mu L, Honer M, Belli S, Alf MF, Schubiger PA, Kramer SD, Ametamey SM (2011) In vitro and in vivo evaluation of [F-18]-FDEGPECO as a PET tracer for imaging the metabotropic glutamate receptor subtype 5 (mGluR5). Neuroimage 56:984–991

    CAS  PubMed  Google Scholar 

  • Waterhouse RN (2003) Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 5:376–389

    PubMed  Google Scholar 

  • Wu WL, Burnett DA, Domalski M, Greenlee WJ, Li C, Bertorelli R, Fredduzzi S, Lozza G, Veltri A, Reggiani A (2007) Discovery of orally efficacious tetracyclic metabotropic glutamate receptor 1 (mGluR1) antagonists for the treatment of chronic pain. J Med Chem 50:5550–5553

    CAS  PubMed  Google Scholar 

  • Xi W, Tian M, Zhang H (2011) Molecular imaging in neuroscience research with small-animal PET in rodents. Neurosci Res 70:133–143

    PubMed  Google Scholar 

  • Yamasaki T, Fujinaga M, Yoshida Y, Kumata K, Yui JJ, Kawamura K, Hatori A, Fukumura T, Zhang MR (2011) Radiosynthesis and preliminary evaluation of 4-[(18)F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as a new positron emission tomography ligand for metabotropic glutamate receptor subtype 1. Bioorg Med Chem Lett 21:2998–3001

    CAS  PubMed  Google Scholar 

  • Yamasaki T, Fujinaga M, Maeda J, Kawamura K, Yui J, Hatori A, Yoshida Y, Nagai Y, Tokunaga M, Higuchi M, Suhara T, Fukumura T, Zhang MR (2012) Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [(18)F]FITM. Eur J Nucl Med Mol Imaging 39:632–641

    CAS  PubMed  Google Scholar 

  • Yanamoto K, Konno F, Odawara C, Yamasaki T, Kawamura K, Hatori A, Yui J, Wakizaka H, Nengaki N, Takei M, Zhang MR (2010) Radiosynthesis and evaluation of [(11)C]YM-202074 as a PET ligand for imaging the metabotropic glutamate receptor type 1. Nucl Med Biol 37:615–624

    CAS  PubMed  Google Scholar 

  • Yu M (2007) Recent developments of the PET imaging agents for metabotropic glutamate receptor subtype 5. Curr Top Med Chem 7:1800–1805

    CAS  PubMed  Google Scholar 

  • Yu MX, Tueckmantel W, Wang XK, Zhu AJ, Kozikowski AP, Brownell AL (2005) Methoxyphenylethynyl, methoxypyridylethynyl and phenylethynyl derivatives of pyridine: synthesis, radiolabeling and evaluation of new PET ligands for metabotropic glutamate subtype 5 receptors. Nucl Med Biol 32:631–640

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon M. Ametamey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mu, L., Ametamey, S.M. (2014). Current Radioligands for the PET Imaging of Metabotropic Glutamate Receptors. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics