Skip to main content

NPC: Nonspecific Phospholipase Cs in Plant Functions

  • Chapter
  • First Online:
Phospholipases in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 20))

Abstract

Nonspecific phospholipase C (NPC) is an emerging class of phospholipases in plants that hydrolyzes primary membrane phospholipids such as phosphatidylcholine to yield sn-1,2-diacylglycerol and a phosphate-containing head group. Unlike the phosphoinositide-specific type of phospholipase C, which is ubiquitous from bacteria to mammals, NPC was known only in bacteria. Analysis of plant genomic sequences has revealed that Arabidopsis and many other plants possess bacterial NPC homologs. Since the first report of an NPC in Arabidopsis in 2005, NPC has been shown to have multiple physiological roles in lipid metabolism or signaling in plants. This chapter summarizes recent advances in NPC studies, focusing on Arabidopsis NPC isoforms and the basic biochemical properties of this enzyme type in different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

DAG:

Diacylglycerol

DGDG:

Digalactosyldiacylglycerol

IAA:

Indole acetic acid

MGDG:

Monogalactosyldiacylglycerol

NPC:

Nonspecific phospholipase C

PA:

Phosphatidic acid

PAP:

PA phosphatase

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI(4,5)P2 :

Phosphatidylinositol 4,5-bisphosphate

PI-PLC:

Phosphoinositides-specific phospholipase C

PLD:

Phospholipase D

References

  • Awai K, Marechal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:10960–10965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boss WF, Im YJ (2012) Phosphoinositide signaling. Annu Rev Plant Biol 63:409–429

    Article  CAS  PubMed  Google Scholar 

  • Chrastil J, Parrish FW (1987) Phospholipases C and D in rice grains. J Agric Food Chem 35:624–627

    Article  CAS  Google Scholar 

  • Douce R, Joyard J (1980) Lipids: structure and function. In: Stumpf PK (ed) The biochemistry of plant, vol 4. Academic, New York, NY, pp 321–362

    Google Scholar 

  • Essigmann B, Guler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:1950–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaude N, Nakamura Y, Scheible WR, Ohta H, Dormann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39

    Article  CAS  PubMed  Google Scholar 

  • Heinz E (1977) Enzymatic reactions in galactolipid biosynthesis. In: Licthenthaler HK, Tevini M (eds) Lipids and lipid polymers. Springer, Berlin, pp 102–120

    Chapter  Google Scholar 

  • Jouhet J, Marechal E, Bligny R, Joyard J, Block MA (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544:63–68

    Article  CAS  PubMed  Google Scholar 

  • Kates M (1955) Hydrolysis of lecithin by plant plastid enzymes. Can J Biochem Physiol 33:575–589

    Article  CAS  PubMed  Google Scholar 

  • Kelly AA, Dormann P (2002) DGD2, an arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Kelly AA, Froehlich JE, Dormann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Awai K, Takamiya K, Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134:640–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Masuda T, Takamiya K, Ohta H (2006) Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J 47:238–248

    Article  CAS  PubMed  Google Scholar 

  • Kocourkova D, Krckova Z, Pejchar P, Veselkova S, Valentova O, Wimalasekera R, Scherer GF, Martinec J (2011) The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot 62:3753–3763

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane MG, Knight BCJG (1941) The biochemistry of bacterial toxins I. The lecithinase activity of Cl. welchii toxins. Biochem J 35:884–902

    CAS  PubMed  Google Scholar 

  • May A, Spinka M, Kock M (2012) Arabidopsis thaliana PECP1: enzymatic characterization and structural organization of the first plant phosphoethanolamine/phosphocholine phosphatase. Biochim Biophys Acta 1824:319–325

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y (2013) Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52:43–50

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ohta H (2007) The diacylglycerol forming pathways differ among floral organs of Petunia hybrida. FEBS Lett 581:5475–5479

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokotylo I, Pejchar P, Potocky M, Kocourkova D, Krckova Z, Ruelland E, Kravets V, Martinec J (2013) The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 52:62–79

    Article  CAS  PubMed  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Reddy VS, Rao DK, Rajasekharan R (2010) Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana. Biochim Biophys Acta 1801:455–461

    Article  CAS  PubMed  Google Scholar 

  • Rouet-Mayer MA, Valentova O, Simond-Cote E, Daussant J, Thevenot C (1995) Critical analysis of phospholipid hydrolyzing activities in ripening tomato fruits. Study by spectrofluorimetry and high-performance liquid chromatography. Lipids 30:739–746

    Article  CAS  PubMed  Google Scholar 

  • Roughan PG (1970) Turnover of the glycerolipids of pumpkin leaves. The importance of phosphatidylcholine. Biochem J 117:1–8

    CAS  PubMed  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    Article  CAS  Google Scholar 

  • Scherer GF, Paul RU, Holk A, Martinec J (2002) Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun 293:766–770

    Article  CAS  PubMed  Google Scholar 

  • Strauss H, Leibovitz-Ben Gershon Z, Heller M (1976) Enzymatic hydrolysis of 1-monoacyl-SN-glycerol-3-phosphorylcholine (1-lysolecithin) by phospholipases from peanut seeds. Lipids 11:442–448

    Article  CAS  PubMed  Google Scholar 

  • Summers PS, Weretilnyk EA (1993) Choline synthesis in spinach in relation to salt stress. Plant Physiol 103:1269–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tasseva G, Richard L, Zachowski A (2004) Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett 566:115–120

    Article  CAS  PubMed  Google Scholar 

  • Titball RW (1993) Bacterial phospholipases C. Microbiol Rev 57:347–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GF (2010) Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant 3:610–625

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Freer S, Benson AA (1967) Transphosphatidylation by phospholipase D. J Biol Chem 242:477–484

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Yu-chi Liu for assistance with the manuscript formatting. The author is supported by a core research grant from the Institute of Plant and Microbial Biology, Academia Sinica, Taiwan, and the Japan Science and Technology Agency, PRESTO, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakamura, Y. (2014). NPC: Nonspecific Phospholipase Cs in Plant Functions. In: Wang, X. (eds) Phospholipases in Plant Signaling. Signaling and Communication in Plants, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42011-5_3

Download citation

Publish with us

Policies and ethics