Skip to main content

Analyzing and Reducing DTI Tracking Uncertainty by Combining Deterministic and Stochastic Approaches

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8033))

Included in the following conference series:

Abstract

Diffusion Tensor Imaging (DTI) in combination with fiber tracking algorithms enables visualization and characterization of white matter structures in the brain. However, the low spatial resolution associated with the inherently low signal-to-noise ratio of DTI has raised concerns regarding the reliability of the obtained fiber bundles. Therefore, recent advancements in fiber tracking algorithms address the accuracy of the reconstructed fibers. In this paper, we propose a novel approach for analyzing and reducing the uncertainty of densely sampled 3D DTI fibers in biological specimens. To achieve this goal, we derive the uncertainty in the reconstructed fiber tracts using different deterministic and stochastic fiber tracking algorithms. Through a unified representation of the derived uncertainty, we generate a new set of reconstructed fiber tracts that has a lower level of uncertainty. We will discuss our approach in detail and present the results we could achieve when applying it to several use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moseley, M., Cohen, Y., Kucharczyk, J., Mintorovitch, J., Asgari, H., Wendland, M., Tsuruda, J., Norman, D.: Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176, 439–445 (1990)

    Google Scholar 

  2. Beaulieu, C.: The basis of anisotropic water diffusion in the nervous system – a technical review. NMR in Biomedicine 15, 435–455 (2002)

    Article  Google Scholar 

  3. Basser, P., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the {NMR} spin echo. Journal of Magnetic Resonance, Series B 103, 247–254 (1994)

    Article  Google Scholar 

  4. Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A.: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. The Lancet Neurology 7, 715–727 (2008)

    Article  Google Scholar 

  5. Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)

    Article  Google Scholar 

  6. Mori, S., van Zijl, P.: Fiber tracking: principles and strategies – a technical review. NMR in Biomedicine 15, 468–480 (2002)

    Article  Google Scholar 

  7. Lazar, M., Alexander, A.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24, 524–532 (2005)

    Article  Google Scholar 

  8. Liu, R.: Bootstrap procedures under some non-iid models. The Annals of Statistics, 1696–1708 (1988)

    Google Scholar 

  9. Whitcher, B., Tuch, D., Wisco, J., Sorensen, A., Wang, L.: Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging. Human Brain Mapping 29, 346–362 (2008)

    Article  Google Scholar 

  10. Jones, D.: Tractography gone wild: Probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Transactions on Medical Imaging 27, 1268–1274 (2008)

    Article  Google Scholar 

  11. Friman, O., Farneback, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging 25, 965–978 (2006)

    Article  Google Scholar 

  12. Parker, G., Haroon, H., Wheeler-Kingshott, C.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of Magnetic Resonance Imaging 18, 242–254 (2003)

    Article  Google Scholar 

  13. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences 96, 10422–10427 (1999)

    Article  Google Scholar 

  14. Mori, S., Crain, B., Chacko, V., Van Zijl, P.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 45, 265–269 (1999)

    Article  Google Scholar 

  15. Weinstein, D., Kindlmann, G., Lundberg, E.: Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In: Proceedings of the Conference on Visualization 1999: Celebrating Ten Years, VIS 1999, pp. 249–253. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  16. Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of the Sixth Joint Eurographics-IEEE TCVG Conference on Visualization, Eurographics Association, pp. 147–154 (2004)

    Google Scholar 

  17. Schultz, T., Kindlmann, G.L.: Superquadric glyphs for symmetric second-order tensors. IEEE Transactions on Visualization and Computer Graphics 16, 1595–1604 (2010)

    Article  Google Scholar 

  18. Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for visualizing uncertainty in vector fields. IEEE Transactions on Visualization and Computer Graphics 2, 266–279 (1996)

    Article  Google Scholar 

  19. Merhof, D., Sonntag, M., Enders, F., Nimsky, C., Hastreiter, P.: Streamline visualization of diffusion tensor data based on triangle strips. In: Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2006. Informatik aktuell, pp. 271–275. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Vilanova, A., Zhang, S., Kindlmann, G., Laidlaw, D.: An introduction to visualization of diffusion tensor imaging and its applications. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 121–153. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Enders, F., Sauber, N., Merhof, D., Hastreiter, P., Nimsky, C., Stamminger, M.: Visualization of white matter tracts with wrapped streamlines. In: Visualization, VIS 2005, pp. 51–58. IEEE (2005)

    Google Scholar 

  22. Chen, W., Zhang, S., Correia, S., Ebert, D.S.: Abstractive representation and exploration of hierarchically clustered diffusion tensor fiber tracts. Computer Graphics Forum 27, 1071–1078 (2008)

    Article  Google Scholar 

  23. Demiralp, C., Laidlaw, D.H.: Similarity coloring of DTI fiber tracts. In: Proceedings of DMFC Workshop at MICCAI (2009)

    Google Scholar 

  24. Demiralp, C., Zhang, S., Tate, D., Correia, S., Laidlaw, D.H.: Connectivity-aware sectional visualization of 3D DTI volumes using perceptual flat-torus coloring and edge rendering. In: Proceedings of Eurographics (2006)

    Google Scholar 

  25. Jianu, D., Zhou, W., Gatay Demiralp, C., Laidlaw, D.: Visualizing spatial relations between 3D-DTI integral curves using texture patterns. In: Proceedings of IEEE Visualization Poster Compendium (2007)

    Google Scholar 

  26. Schultz, T., Theisel, H., Seidel, H.P.: Topological visualization of brain diffusion MRI data. IEEE Transactions on Visualization and Computer Graphics 13, 1496–1503 (2007)

    Article  Google Scholar 

  27. Moberts, B., Vilanova, A., van Wijk, J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: Visualization, VIS 2005, pp. 65–72. IEEE (2005)

    Google Scholar 

  28. Lodha, S.K., Pang, A., Sheehan, R.E., Wittenbrink, C.M.: UFLOW: visualizing uncertainty in fluid flow. In: Proceedings of the Visualization 1996, pp. 249–254 (1996)

    Google Scholar 

  29. Chen, W., Ding, Z., Zhang, S., MacKay-Brandt, A., Correia, S., Qu, H., Crow, J., Tate, D., Yan, Z., Peng, Q.: A novel interface for interactive exploration of DTI fibers. IEEE Transactions on Visualization and Computer Graphics 15, 1433–1440 (2009)

    Article  Google Scholar 

  30. Akers, D.: Cinch: a cooperatively designed marking interface for 3D pathway selection. In: Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, UIST 2006, pp. 33–42. ACM, New York (2006)

    Chapter  Google Scholar 

  31. Sherbondy, A., Akers, D., MacKenzie, R., Dougherty, R., Wandell, B.: Exploring connectivity of the brain’s white matter with dynamic queries. IEEE Transactions on Visualization and Computer Graphics 11, 419–430 (2005)

    Article  Google Scholar 

  32. Blaas, J., Botha, C., Peters, B., Vos, F., Post, F.: Fast and reproducible fiber bundle selection in DTI visualization. In: Visualization, VIS 2005, pp. 59–64. IEEE (2005)

    Google Scholar 

  33. Jianu, R., Demiralp, C., Laidlaw, D.: Exploring 3D DTI fiber tracts with linked 2D representations. IEEE Transactions on Visualization and Computer Graphics 15, 1449–1456 (2009)

    Article  Google Scholar 

  34. Brecheisen, R., Vilanova, A., Platel, B., ter Haar Romeny, B.: Parameter sensitivity visualization for DTI fiber tracking. IEEE Transactions on Visualization and Computer Graphics 15, 1441–1448 (2009)

    Article  Google Scholar 

  35. Seunarine, K., Cook, P., Embleton, K., Parker, G., Alexander, D.: A general framework for multiple-fibre PICo tractography. In: Medical Image Understanding and Analysis (2006)

    Google Scholar 

  36. Zhu, T., Liu, X., Connelly, P., Zhong, J.: An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain. Neuroimage 40, 1144–1156 (2008)

    Article  Google Scholar 

  37. Chung, S., Lu, Y., Henry, R.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33, 531–541 (2006)

    Article  Google Scholar 

  38. Vilanova, A., Berenschot, G., Van Pul, C.: DTI visualization with streamsurfaces and evenly-spaced volume seeding. In: Proceedings of the Sixth Joint Eurographics-IEEE TCVG Conference on Visualization, Eurographics Association, pp. 173–182 (2004)

    Google Scholar 

  39. Mallo, O., Peikert, R., Sigg, C., Sadlo, F.: Illuminated lines revisited. In: Visualization, VIS 2005, pp. 19–26. IEEE (2005)

    Google Scholar 

  40. Deoni, S.: PISTE - phantom images for simulating tractography errors (2008), http://neurology.iop.kcl.ac.uk/dtidataset/Common_DTI_Dataset.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, K.T., Ynnerman, A., Ropinski, T. (2013). Analyzing and Reducing DTI Tracking Uncertainty by Combining Deterministic and Stochastic Approaches. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41914-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41914-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41913-3

  • Online ISBN: 978-3-642-41914-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics