Skip to main content

High-Accuracy Relativistic Coupled Cluster Calculations for the Heaviest Elements

  • Living reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

High-accuracy calculations of atomic properties of the heaviest elements, up to element 122, are reviewed. The properties discussed include ionization potentials, electron affinities, and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac-Coulomb-Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by the Fock-space coupled cluster method, enhanced by the intermediate Hamiltonian scheme, allowing the use of large, converged model (P) spaces. The quality of the calculations is assessed by comparison with available experimental information. Very good agreement is obtained, usually within a few hundredths of an eV, and similar accuracy is expected for the superheavy elements (SHEs), with Z ≥ 104, for which experimental values are scarce. Many of the properties predicted for these species differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity . The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental-computational studies of the ionization energies of At and Lr, with excellent agreement of experiment and theory. For Lr, calculations were required not only for comparison with experiment; the extraction of the ionization potential from experimental data depended on reliable estimates of atomic excitation energies, obtainable from theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schädel M (2015) Philos Trans R Soc A 373:20140191

    Article  Google Scholar 

  2. Sewtz M, Backe H, Dretzke A, Kube G, Lauth W, Schwamb P, Eberhardt K, Grüning C, Thörle P, Trautmann N, Kunz P, Lassen J, Passler G, Dong CZ, Fritzsche S, Haire RG (2003) Phys Rev Lett 90:163002

    Article  CAS  Google Scholar 

  3. Rothe S, Andreyev AN, Antalic S, Borschevsky A, Capponi L, Cocolios TE, De Witte H, Eliav E, Fedorov DV, Fedosseev VN, Fink DA, Fritsche S, Ghys L, Huyse M, Imai N, Kaldor U, Kudryavtsev Yu, Köster U, Lane J, Lassen J, Liberati V, Lynch KM, Marsh BA, Nishio K, Pauwels D, Pershina V, Popescu L, Procter TJ, Radulov D, Raeder S, Rajabali MM, Rapisarda E, Rossel RE, Sandhu K, Seliverstov MD, Sjödin AM, van der Berg P, Van Duppen P, Venhart M, Wakabayashi Y, Wendt KDA (2013) Nat Commun 4:1835

    Article  CAS  Google Scholar 

  4. Sato TK, Asai M, Borschevsky A, Stora T, Sato N, Kaneya Y, Tsukada K, Düllmann ChE, Eberhardt K, Eliav E, Ichikawa S, Kaldor U, Kratz JV, Miyashita S, Nagame Y, Ooe K, Osa A, Renisch D, Runke J, Schädel M, Thörle-Pospiech P, Toyoshima A, Trautmann N (2015) Nature 520:209

    Article  CAS  Google Scholar 

  5. Borschevsky A, Eliav E, Vilkas MJ, Ishikawa Y, Kaldor U (2007) Eur Phys J D 45:115

    Article  CAS  Google Scholar 

  6. Morss LR, Edelstein NM, Fuger J (eds) (2010) The chemistry of the actinide and transactinide elements, 4th edn. Springer, Dordrecht

    Google Scholar 

  7. Türler A, Pershina V (2013) Chem Rev 113:1237; Schädel M (2006) Angew Chem Int Ed 45:368; Schädel M (2012) Radiochim Acta 100:579; Radiochim Acta 99 (2011), special volume

    Google Scholar 

  8. Pyykkö P (2013) J Comput Chem 34:2667. http://rtam.csc.fi

  9. Eliav E, Kaldor U (2010) In: Barysz M, Ishikawa Y (eds) Relativistic methods for chemists. Springer, London, pp 279ff.; also In: Pittner J, Charsky P, Paldus J (eds) Recent progress in coupled cluster methods: theory and applications. Springer, Dordrecht/Heidelberg/London/New York, pp. 113ff., 2010

    Google Scholar 

  10. Sucher J (1989) In: Johnson W, Mohr P, Sucher J (eds) Relativistic, quantum electrodynamic, and weak interaction effects in atoms. American Institute of Physics, New York, pp 28–57

    Google Scholar 

  11. Sucher J (1980) Phys Rev A 22:348; Phys Scr 36:271 (1987)

    Google Scholar 

  12. Lindgren I (1989) In: Kaldor U (ed) Many-body methods in quantum chemistry. Lecture notes in chemistry, vol 52. Springer, Heidelberg, pp 293–306; Nucl Instr Meth B 31:102 (1988)

    Google Scholar 

  13. Pyykkö P (2012) Chem Rev 112:371

    Article  Google Scholar 

  14. Mittleman M (1971) Phys Rev A 4:893; Phys Rev A 6:2395–2401 (1972); Phys Rev A 24:1167 (1981)

    Google Scholar 

  15. Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  16. Kaldor U, Eliav E (1998) Adv Quantum Chem 31:313

    Article  CAS  Google Scholar 

  17. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  18. Ishikawa Y, Binning RC, Sando KM (1983) Chem Phys Lett 101:111; Chem Phys Lett 105, 189 (1984); Chem Phys Lett 117:444 (1985); Ishikawa Y, Baretty R, Binning RC (1985) Chem Phys Lett 121:130; Ishikawa Y, Quiney HM (1987) Intern J Quantum Chem Symp 21:523

    Google Scholar 

  19. Ilyabaev E (Eliav), Kaldor U, Chem Phys Lett 194:95 (1992); Phys Rev A 47:137 (1993); Eliav E, Kaldor U (1996) Chem Phys Lett 248:405; Eliav E, Kaldor U, HeßBA (1998) J Chem Phys 108:3409

    Google Scholar 

  20. Pal S, Mukherjee D (1989) Adv Quantum Chem 20:292

    Google Scholar 

  21. Kaldor U (1991) Theor Chim Acta 80:427

    Article  CAS  Google Scholar 

  22. Kaldor U, Eliav E (1998) Adv Quantum Chem 31:313

    Article  CAS  Google Scholar 

  23. Ishikawa Y, Binning RC, Sekino H (1989) Chem Phys Lett 160:206; Ishikawa Y (1990) Phys Rev A 42:1142; Chem Phys Lett 166:321 (1990); Ishikawa Y, Quiney HM (1993) Phys Rev A 47:1732; Ishikawa Y (1994) Koc K, Phys Rev A 50:4733

    Article  CAS  Google Scholar 

  24. Salomonson S, Lindgren I, Mårtensson A-M (1980) Phys Scr 21:351; Lindgren I, Morrison J (1986) Atomic Many-Body Theory, 2nd edn. Springer, Berlin

    Article  CAS  Google Scholar 

  25. Hughes SR, Kaldor U (1992) Chem Phys Lett 194:99; Chem Phys Lett 204:339 (1993); Phys Rev A 47:4705 (1993); J Chem Phys 99:6773 (1993); Int J Quantum Chem 55:127 (1995)

    Article  CAS  Google Scholar 

  26. Landau A, Eliav E, Ishikawa Y, Kaldor U (2004) J Chem Phys 121:6634

    Article  CAS  Google Scholar 

  27. Landau A, Eliav E, Kaldor U (1999) Chem Phys Lett 313:399; Landau A, Eliav E, Ishikawa Y, Kaldor U (2000) J Chem. Phys. 113:9905; Landau A, Eliav E, Kaldor U (2001) Adv Quantum Chem 39:172

    Google Scholar 

  28. Eliav E, Vilkas MJ, Ishikawa Y, Kaldor U (2005) J Chem Phys 122:224113

    Article  Google Scholar 

  29. Eliav E, Kaldor U, Ishikawa Y (1994) Phys Rev A 49:1724

    Article  CAS  Google Scholar 

  30. Eliav E, Shmulyian S, Kaldor U, Ishikawa Y (1998) J Chem Phys 109:3954

    Article  CAS  Google Scholar 

  31. Autschbach J, Siekierski S, Seth M, Schwerdtfeger P, Schwarz WHE (2002) J Comput Chem 23:804

    Article  CAS  Google Scholar 

  32. Eliav E, Kaldor U, Ishikawa Y (1994) Phys Rev A 50:1121

    Article  CAS  Google Scholar 

  33. Goidenko IA, Labzowsky L, Eliav E, Kaldor U (2003) Pyykkö P, Phys Rev A 67:020101

    Article  Google Scholar 

  34. Martin WC, Zabulas R, Hagan L (1978) Atomic energy levels – the rare earths elements. National standard reference data series, National Bureau of Standards, Washington, DC

    Google Scholar 

  35. Keller OL (1984) Radiochim Acta 37:169; Mann JB, quoted by Fricke B, Waber JT (1971) Actinides Rev 1:433; Glebov VA, Kasztura L, Nefedov VS, B.L Zhuikov (1989) Radiochim Acta 46:117; Johnson E, Fricke B, Keller OL, Nestor CW Jr, Tucker TC (1990) J Chem Phys 93:8041

    Google Scholar 

  36. Eliav E, Kaldor U, Ishikawa Y (1995) Phys Rev A 51:225

    Article  CAS  Google Scholar 

  37. Eliav E, Kaldor U, Ishikawa Y (1995) Phys Rev Lett 74:1079

    Article  CAS  Google Scholar 

  38. Schädel M (1995) Radiochim Acta 70/71:207

    Google Scholar 

  39. Hay PJ, Wadt WR, Kahn LR, Bobrowicz FW (1978) J Chem Phys 69:984; Pizlo A, Jansen G, Hess BA (1993) J Chem Phys 98:3945

    Google Scholar 

  40. Moore CE (1952, 1958) Atomic Energy Levels, National Bureau of Standards (U.S.), Circ No. 467, vol ii (1952), vol iii (1958). U.S. GPO, Washington, DC

    Google Scholar 

  41. Eliav E, Kaldor U, Schwerdtfeger P, Hess BA, Ishikawa Y (1994) Phys Rev Lett 73:3203

    Article  CAS  Google Scholar 

  42. Eliav E, Kaldor U, Ishikawa Y (1995) Phys Rev A 52:2765

    Article  CAS  Google Scholar 

  43. Eliav E, Kaldor U, Ishikawa Y, Seth M, Pyykkö P (1996) Phys Rev A 53:3926

    Article  CAS  Google Scholar 

  44. Hotop H, Lineberger WC (1985) J Chem Phys Ref Data 4 539 (1975); ibid, 14:731

    Google Scholar 

  45. Arnau F, Mota F, Novoa JJ (1992) Chem Phys 166:77

    Article  CAS  Google Scholar 

  46. Wijesundera WP (1997) Phys Rev A 55:1785

    Article  CAS  Google Scholar 

  47. Carpenter DL, Covington AM, Thompson JS (2000) Phys Rev A 61:042501

    Article  Google Scholar 

  48. Landau A, Eliav E, Ishikawa Y, Kaldor U (2001) J Chem Phys 114:2977

    Article  CAS  Google Scholar 

  49. Seth M, Fægri K, Schwerdtfeger P (1998) Angew Chem Intl Ed 37:2493

    Article  CAS  Google Scholar 

  50. Lide DR (ed) (1993) Handbook of Chemistry and Physics, 74th edn. CRC Press, Boca Raton

    Google Scholar 

  51. Yu YJ, Dong CZ, Li JG, Fricke B (2008) J Chem Phys 128:124316

    Article  CAS  Google Scholar 

  52. Borschevsky A, Pershina V, Eliav E, Kaldor U (2009) Chem Phys Lett 480:51

    Article  Google Scholar 

  53. Pershina V, Borschevsky A, Eliav E, Kaldor U (2008) J Chem Phys 128:024707

    Article  CAS  Google Scholar 

  54. Thierfelder C, Assadollahzadeh B, Schwerdtfeger P, Schäfer S (2008) Phys Rev A 78:052506

    Article  Google Scholar 

  55. Eliav E, Kaldor U, Ishikawa Y, Pyykkö P (1996) Phys Rev Lett 77:5350

    Article  CAS  Google Scholar 

  56. Pyykkö P, Tokman M, Labzowsky L (1998) Phys Rev A 57:R689–R692; Labzowsky L, Goidenko I, Tokman M, Pyykkö P (1999) Phys Rev A 59:2707

    Google Scholar 

  57. Borschevsky A, Pershina V, Eliav E, Kaldor U (2013) J Chem Phys 138:124302

    Article  CAS  Google Scholar 

  58. Borschevsky A, Pershina V, Eliav E, Kaldor U (2013) Phys Rev A 87:022502

    Article  Google Scholar 

  59. Bahrim C, Thumm U (2000) Phys Rev A 61:022722

    Article  Google Scholar 

  60. Fabrikant II (1982) Opt Spektrosk 53:223

    CAS  Google Scholar 

  61. Froese Fischer C, Chen D (1989) J Mol Struct 199:61

    Article  Google Scholar 

  62. Greene CH (1990) Phys Rev A 42:1405

    Article  CAS  Google Scholar 

  63. Scheer M, Thogersen J, Bilodeau RC, Brodie CA, Haugen HK, Andersen HH, Kristensen P, Andersen T (1998) Phys Rev Lett 80:684

    Article  Google Scholar 

  64. Landau A, Eliav E, Ishikawa Y, Kaldor U (2001) J Chem Phys 115:2389

    Article  CAS  Google Scholar 

  65. Eliav E, Landau A, Ishikawa Y, Kaldor U (2002) J Phys B 35:1693

    Article  CAS  Google Scholar 

  66. Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2013). NIST Atomic Spectra Database (version 5.1). http://physics.nist.gov/asd [Wednesday, 20-Aug-2014 05:45:32 EDT]. National Institute of Standards and Technology, Gaithersburg, MD; VizieR astronomical database. http://vizier.u-strasbg.fr

  67. Hose G, Kaldor U (1979) J Phys B 12:3827; Phys Scr 21:357 (1980)

    Google Scholar 

  68. Meissner L, Kucharski SA, Bartlett RJ (1989) J Chem Phys 91:6187; Meissner L, Bartlett RJ (1990) J Chem Phys 92:561

    Google Scholar 

  69. Fricke B, Greiner W, Waber JT (1971) Theor Chim Acta 21:231; Fricke B, McMinn J (1976) Naturwiss 63:162

    Google Scholar 

  70. Mann JB, Waber JT (1970) J Chem Phys 53:2397

    Article  CAS  Google Scholar 

  71. Umemoto K, Saito S (1996) J Phys Soc Japan 65:3175

    Article  Google Scholar 

  72. Fritzsche S (2005) Eur Phys J D 33:15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ephraim Eliav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Eliav, E., Borschevsky, A., Kaldor, U. (2015). High-Accuracy Relativistic Coupled Cluster Calculations for the Heaviest Elements. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41611-8_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41611-8_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-41611-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics