Skip to main content

Military Robotics

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Robotics

Abstract

NA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AeroVironment I (2021) Aerovironment. https://www.avinc.com/

  • Aid MM, Wiebes C (2001) Secrets of signals intelligence during the cold war: from cold war to globalization. Routledge

    Google Scholar 

  • Air Combat Command (2015a) MQ-1B Predator. Fact Sheets

    Google Scholar 

  • Air Combat Command (2015b) MQ-9 Reaper. Fact Sheets

    Google Scholar 

  • Allard Y, Shahbazian E (2014) Unmanned underwater vehicle (UUV) information study. Technical report, Atlantic Research Centre, Dartmouth

    Google Scholar 

  • Alleslev L (2019) NATO Anti-submarine warfare: rebuilding capability, preparing for the future. Technical report, NATO Parliamentary Assembly

    Google Scholar 

  • Arkin R (2009) Governing lethal behavior in autonomous robots. Chapman and Hall/CRC Press

    Book  Google Scholar 

  • Balkan S (2017) Daesh’s drone strategy – technology and the rise of innovative terrorism. Technical report, SETA – Foundation for political, economic and social research

    Google Scholar 

  • Barnes M, Jentsch F (2016) Human-robot interactions in future military operations. CRC Press

    Google Scholar 

  • Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R, Chatila R, Herrera F (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fus 58:82–115. https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  • Barrett M (2004) “wielding the dagger”: the marinekorps flandern and the german war effort, 1914–1918 (review). J Mil Hist 68:1276–1278. https://doi.org/10.1353/jmh.2004.0166

    Google Scholar 

  • Battista T, Monckton S, Sloan E (2018) Robotics and military operations. The Kingston Consortium on International Security, Strategic Studies Institute and U.S. Army War College Press

    Google Scholar 

  • Bendett S, Boulègue M, Connolly R, Konaev M, Podvig P, Zysk K (2021) Advanced military technology in Russia – capabilities and implications. Chatham House, London

    Google Scholar 

  • Boot M (2017) War made new: weapons, warriors, and the making of the modern world. Avery

    Google Scholar 

  • Bounker P, Volk A (2015) NATO LCG UGV ToE interoperability experiences. In: Proceedings of AVT-241 specialists’ meeting on technological and operational problems connected with UGV application for future military operations. NATO Science and Technology Organization. https://doi.org/10.14339/STO-MP-AVT-241

  • Bovio E, Cecchi D, Baralli F (2006) Autonomous underwater vehicles for scientific and naval operations. Annu Rev Control 30:117–130. https://doi.org/10.1016/j.arcontrol.2006.08.003

    Article  Google Scholar 

  • Carroll D, Gilbreath G, Grant K, Day L (2003) Command and control for mixed manned and unmanned security forces. Technical report, Space and Naval Warfare Systems Center

    Google Scholar 

  • Carroll D, Mikell K, Denewiler T (2004) Unmanned ground vehicles for integrated force protection. In: Proceedings of SPIE 5422, unmanned ground vehicle technology VI, https://doi.org/10.1117/12.553045

  • Cerrudo C, Apa L (2017) Hacking robots before skynet. In: IOActive website, pp 1–17

    Google Scholar 

  • Chamberlain P, Doyle H (1999) Encyclopedia of german tanks of world war two, 2nd edn. Arms & Armour

    Google Scholar 

  • Colon E, De Cubber G, Ping H, Habumuremyi J, Sahli H, Baudoin Y (2007) Integrated robotic systems for humanitarian demining. Int J Adv Robot Syst 4(2):24

    Article  Google Scholar 

  • Congressional Research Service (2020) Navy large unmanned surface and undersea vehicles: background and issues for congress. Technical report, US Congress

    Google Scholar 

  • Corfield S, Young J (2006) Unmanned surface vehicles – game changing technology for naval operations. In: Advances in unmanned marine vehicles, pp 311–328. https://doi.org/10.1049/PBCE069E_ch15

    Google Scholar 

  • Crootof R (2014) The killer robots are here: legal and policy implications. Cardozo L Rev 36:1837

    Google Scholar 

  • Cummings M (2017) Artificial intelligence and the future of warfare. In: International Security Department and US and the Americas Programme. Chatham House

    Google Scholar 

  • Davies A (2014) The marines’ self-flying chopper survives a three-year tour. Wired

    Google Scholar 

  • De Cubber G, Doroftei D, Sahli H, Baudoin Y (2011) Outdoor terrain traversability analysis for robot navigation using a time-of-flight camera. In: RGB-D workshop on 3D perception in robotics

    Google Scholar 

  • De Cubber G, Doroftei D, Rudin K, Berns K, Serrano D, Sanchez J, Govindaraj S, Bedkowski J, Roda R (2017) Search and rescue robotics-from theory to practice. InTechOpen

    Book  Google Scholar 

  • Elliott L, Williams N, Siddapureddy V (2012) Open management group data distribution service (OMG-DDS) as a data transport for vehicular integration for C4ISR/EW interoperability (VICTORY) services. In: Proceedings of the ground vehicle systems engineering and technology symposium. National Defense Industrial Association

    Google Scholar 

  • Ergene Y (2016) Ananlysis of unmanned systems in military logistics. Master’s thesis, Naval Postgraduate School

    Google Scholar 

  • European Parliament (2018) European Parliament resolution of 12 September 2018 on autonomous weapon systems (2018/2752(RSP))

    Google Scholar 

  • Fahlstrom PG, Gleason TJ (2012) Introduction to UAV systems. Wiley

    Google Scholar 

  • FLIR (2020) Black Hornet VRS. Technical report, FLIR Systems, Inc.

    Google Scholar 

  • Floridi L (2019) Establishing the rules for building trustworthy AI. Nat Mach Intell 1(6):261–262. https://doi.org/10.1038/s42256-019-0055-y

    Article  Google Scholar 

  • Gafurov S, Klochkov E (2015) Autonomous unmanned underwater vehicles development tendencies. Proc Eng 106:141–148

    Article  Google Scholar 

  • Gettinger D, Michel A (2017) Loitering munitions – in focus. Technical report, Center for the Study of the Drone, Bard College. https://dronecenter.bard.edu/files/2017/02/CSD-Loitering-Munitions.pdf

  • Guerrero-Higueras A, DeCastro-García N, Matellán V (2018) Detection of cyber-attacks to indoor real time localization systems for autonomous robots. Robot Auton Syst 99:75–83. https://doi.org/10.1016/j.robot.2017.10.006, http://www.sciencedirect.com/science/article/pii/S092188901730283X

  • Heffner K, Pullen J, Simonsen K, Schade U, Reus N, Khimeche L, Zevassvik O, Brook A, Veiga R (2010) NATO MSG-048 C-BML final report summary. In: Fall simulation interoperability workshop, pp 229–239

    Google Scholar 

  • Henshaw M (2011) Assessment of open architectures within defence procurement issue 1: systems of systems approach community forum working group 1 – open systems and architectures. Technical report, oSA Community Forum Working Group 1 (Open Systems), London

    Google Scholar 

  • High-Level Expert Group on AI (2019) Ethics guidelines for trustworthy AI. Technical report, European Commission

    Google Scholar 

  • Ho B (2021) The second nagorno-karabakh war. J Indo-Pac Affairs 24–39

    Google Scholar 

  • Human Rights Watch (2021) The campaign to stop killer robots. https://www.stopkillerrobots.org/. Accessed: 28 Jan 2021

  • Humphrey CM, Adams JA (2009) Robotic tasks for chemical, biological, radiological, nuclear and explosive incident response. Adv Robot 23:1217–1232

    Article  Google Scholar 

  • Jang-Jaccard J, Nepal S (2014) A survey of emerging threats in cybersecurity. J Comput Syst Sci 80(5):973–993. https://doi.org/10.1016/j.jcss.2014.02.005, http://www.sciencedirect.com/science/article/pii/S0022000014000178, special Issue on Dependable and Secure Computing

  • Kania E (2018) The PLA’s unmanned aerial systems: new capabilities for a “new era” of Chinese military power. Chinese Aerospace Studies Institute

    Google Scholar 

  • Kauppinen M (2020) Robotic process automation in containerized environment. Master’s thesis, JAMK University of Applied Sciences

    Google Scholar 

  • Keller J (2020) Navy evaluating unmanned cargo aircraft for long-range ship-to-ship and ship-to-shore resupply missions. Military & Aerospace Electronics

    Google Scholar 

  • Kostavelis I, Gasteratos A (2017) Robots in crisis management: a survey. Information Systems for Crisis Response and Management in Mediterranean Countries ISCRAM-med 301. https://doi.org/10.1007/978-3-319-67633-3_4

  • Krishnan A (2009) Killer robots: legality and ethicality of autonomous weapons. Routledge

    Google Scholar 

  • Langerwisch M, Wittmann T, Thamke S, Remmersmann T, Tiderko A, Wagner B (2013) Heterogeneous teams of unmanned ground and aerial robots for reconnaissance and surveillance – a field experiment. In: Proceedings of the 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR). https://doi.org/10.1109/SSRR.2013.6719320

  • Lera F, Llamas CF, Guerrero Á, Olivera VM (2017) Cybersecurity of robotics and autonomous systems: privacy and safety. In: Dekoulis G (ed) Robotics – legal, ethical and socioeconomic impacts. InTech. https://doi.org/10.5772/intechopen.69796

  • Liu Z, Zhang Y, Yu X, Yuan C (2016) Unmanned surface vehicles: an overview of developments and challenges. Annu Rev Control 41:71–93. https://doi.org/10.1016/j.arcontrol.2016.04.018

    Article  Google Scholar 

  • López DS, Moreno G, Cordero J, Sanchez J, Govindaraj S, Marques MM, Lobo V, Fioravanti S, Grati A, Rudin K, Tosa M, Matos A, Dias A, Martins A, Bedkowski J, Balta H, De Cubber G (2017) Interoperability in a heterogeneous team of search and rescue robots. In: Search and rescue robotics-from theory to practice, IntechOpen, London pp 93–125

    Google Scholar 

  • Lundberg C, Reinhold R, Christensen HI (2007) Evaluation of robot deployment in live missions with the military, police, and fire brigade. In: Proceedings of SPIE 6538, sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense, vol VI. https://doi.org/10.1117/12.718345

  • Murphy RR (2019) Introduction to AI robotics, 2nd edn. MIT Press, Cambridge, MA

    Google Scholar 

  • Murphy RR, Peschel J, Arnett C, Martin D (2012) Projected needs for robot-assisted chemical, biological, radiological, or nuclear (CBRN) incidents. In: Proceedings of the IEEE international symposium on safety, security, and rescue robotics (SSRR), pp 1–4

    Google Scholar 

  • NATO (2012) STANAG 4586, Standard interfaces of UAV control system (UCS) for NATO UAV interoperability, 3rd edn. NATO

    Google Scholar 

  • NATO (2018) STANAG 4754, NATO generic systems architecture (NGVA) for land systems, 1st edn. NATO

    Google Scholar 

  • NATO Standardization Agency (2014) Nato stanag 4670 – atp-3.3.7, (edition 3) guidance for the training of unmanned aircraft systems (UAS) operators

    Google Scholar 

  • New America (2019) Non-state actors with drone capabilities. International Security Report

    Google Scholar 

  • Nielsen CW, Gertman DI, Bruemmer DJ, Hartley RS, Walton MC (2008) Evaluating robot technologies as tools to explore radiological and other hazardous environments. In: Proceedings of the 2nd joint topical meeting emergency preparedness & response and robotics & remote systems “emergency management & robotics for hazardous environments”

    Google Scholar 

  • Northrop Grumman Aerospace Systems (2012) RQ-4 block 30 global hawk. Technical report, Northrop Grumman Systems Corporation

    Google Scholar 

  • Odedra S, Prior S, Karamanoglu M, Shen S (2009) Increasing the trafficability of unmanned ground vehicles through intelligent morphing. In: 2009 ASME/IFToMM international conference on reconfigurable mechanisms and robots, pp 674–681

    Google Scholar 

  • Open Systems Joint Task Force (2004) Modular open systems approach to acquisition, version 2

    Google Scholar 

  • O’Rourke R (2019) Navy large unmanned surface and undersea vehicles. Technical report, US Congress

    Google Scholar 

  • Pan J, Yang Z (2018) Cybersecurity challenges and opportunities in the new “edge computing + IoT” world. In: ACM international workshop on security in software defined networks & network function virtualization, SDN-NFV Sec’18. Association for Computing Machinery, New York, pp 29–32. https://doi.org/10.1145/3180465.3180470

    Google Scholar 

  • Priyadarshini I (2017) Cyber security risks in robotics. IGI Global, pp 333–348. https://doi.org/10.4018/978-1-5225-2154-9.ch022

  • Raibert M, Blankespoor K, Nelson G, Playter R (2008) BigDog, the rough-terrain quadruped robot. Proc SPIE 41:10822–10825. https://doi.org/10.3182/20080706-5-KR-1001.01833

    Google Scholar 

  • Rajan K, Saffiotti A (2017) Towards a science of integrated ai and robotics. Artif Intell 247:1–9. https://doi.org/10.1016/j.artint.2017.03.003, special Issue on AI and Robotics

  • Remmersmann T, Tiderko A, Schade U, Langerwisch M, Thamke S (2013) Smart control and detection feedback for a multi-robot border control system. In: Proceedings of the 8th future security conference, Berlin

    Google Scholar 

  • Riebe T, Schmid S, Reuter C (2020) Meaningful human control of lethal autonomous weapon systems: the CCW-debate and its implications for VSD. IEEE Technol Soc Mag 39(4):36–51. https://doi.org/10.1109/MTS.2020.3031846

    Article  Google Scholar 

  • Robert B (2016) The role of robots in the battlefields of the future. Ind Robot Int J 43(4):354–359. https://doi.org/10.1108/IR-03-2016-0104

    Article  Google Scholar 

  • Rossiter A (2020) Bots on the ground: an impending UGV revolution in military affairs? Small Wars Insurgencies 31:851–873. https://doi.org/10.1080/09592318.2020.1743484

    Article  Google Scholar 

  • Rowe S, Wagner C (2007) An introduction to the joint architecture for unmanned systems (JAUS). In: Fall simulation interoperability workshop, vol 2, pp 1645–1652

    Google Scholar 

  • Rudakevych P, Ciholas M (2005) PackBot EOD firing system. In: Proceedings of SPIE 5804, unmanned ground vehicle technology VII. https://doi.org/10.1117/12.609266

  • Samek W, Montavon G, Vedaldi A, Hansen LK, Müller K (eds) (2019) Explainable AI: interpreting, explaining and visualizing deep learning, Lecture notes in computer science, vol 11700. Springer. https://doi.org/10.1007/978-3-030-28954-6

    Google Scholar 

  • Scharre P (2018) Army of none: autonomous weapons and the future of war. Tantor Audio, Old Saybrook

    Google Scholar 

  • Scharre P (2019) Killer apps: the real dangers of an AI arms race. In: Foreign affairs, council on foreign relations, New York

    Google Scholar 

  • Schiaretti M, Chen L, Negenborn R (2017) Survey on autonomous surface vessels: part II – categorization of 60 prototypes and future applications. Computat Logist. 10572. https://doi.org/10.1007/978-3-319-68496-3_16

  • Schneider FE, Welle J, Wildermuth D, Ducke M (2012) Unmanned multi-robot CBRNE reconnaissance with mobile manipulation. In: Proceedings of the 13th IEEE international carpathian control conference (ICCC), pp 637–642

    Google Scholar 

  • Schneider FE, Gaspers B, Tiderko A, Katorgin O, Wildermuth D (2016) Unmanned systems for radiological and nuclear measuring and mapping. In: Proceedings of the international scientific and technological conference “EXTREME ROBOTICS”

    Google Scholar 

  • Schneider FE, Wildermuth D, Rosas FG, Paepen J, Lutter G (2020) The IEC 63047 standard for data transmission in radiological and nuclear robotics applications. in: Proceedings of the 10th IEEE international conference on systems IS20, pp 125–131. https://doi.org/10.1109/IS48319.2020.9200119

  • Seehuus R, Mathiassen K, Ruud E, Simonsen A, Hermansen F (2019) Battle management language for robotic systems. Model Simul Auton Syst 11472:302–320

    Google Scholar 

  • Serle J, Purkiss J (2017) Drone wars: the full data. Bureau Invest J https://www.thebureauinvestigates.com/stories/2017-01-01/drone-wars-the-full-data

  • Sharkey N (2012) Automating Warfare: lessons learned from the drones. J Law Inf Sci 21(2) https://doi.org/10.5778/JLIS.2011.21.Sharkey.1

  • Singer P (2009a) Robots at war: the new battlefield. Wilson Q 33:30–48

    Google Scholar 

  • Singer P (2009b) Wired for war: the robotics revolution and conflict in the 21st century . Penguin

    Google Scholar 

  • Sisson M, Spindel J, Scharre P, China Arms Control and Disarmament Association, Kozyulin V (2019) The militarization of artificial intelligence. Technical report, United Nations Office for Disarmament Affairs, New York

    Google Scholar 

  • Sparrow R (2007) Killer robots. J Appl Philos24(1):62–77

    Google Scholar 

  • Springer P (2013) Military robots and drones: a reference handbook. ABC-CLIO

    Google Scholar 

  • Springer PJ (2018) Outsourcing war to machines: the military robotics revolution. Praeger security international, Praeger, an imprint of ABC-CLIO, LCC, Santa Barbara

    Google Scholar 

  • Stauffer B (2021) Stopping killer robots: country positions on banning fully autonomous weapons and retaining human control. https://www.hrw.org/report/2020/08/10/stopping-killer-robots/country-positions-banning-fully-autonomous-weapons-and#_ftn5. Accessed: 29 Jan 2021

  • Terracciano D, Bazzarello L, Caiti A, Costanzi R, Manzari V (2020) Marine robots for underwater surveillance. Curr Robot Rep 1:159–167. https://doi.org/10.1007/s43154-020-00028-z

    Article  Google Scholar 

  • The Maritime Executive (2020) China’s unmanned “mini-destroyer” out on sea trials. The Maritime Executive

    Google Scholar 

  • Torrieri DJ (1981) Principles of military communication systems. Artech, Dedham. http://books.google.com/books?id=puBTAAAAMAAJ

    Google Scholar 

  • Voth D (2004) A new generation of military robots. IEEE Intell Syst 19(4):2–3. https://doi.org/10.1109/MIS.2004.30

    Article  Google Scholar 

  • Wachter S, Mittelstadt B, Floridi L (2017) Transparent, explainable, and accountable ai for robotics. Sci Robot 2(6). https://doi.org/10.1126/scirobotics.aan6080, https://robotics.sciencemag.org/content/2/6/eaan6080, https://robotics.sciencemag.org/content/2/6/eaan6080.full.pdf

  • Wells P, Deguire D (2005) TALON: a universal unmanned ground vehicle platform, enabling the mission to be the focus. In: Proceedings of SPIE 5804, unmanned ground vehicle technology VII. https://doi.org/10.1117/12.602887

  • Wicik R, Borowski M (2020) Cryptographic protection of classified information in military radio communication faced with threats from quantum computers. In: Kaniewski P, Matuszewski J (eds) Radioelectronic systems conference 2019, international society for optics and photonics. SPIE vol 11442, pp 225–232. https://doi.org/10.1117/12.2565467

    Google Scholar 

  • Wisskirchen G, Biacabe BT, Bormann U, Muntz A, Niehaus G, Soler GJ, von Brauchitsch B (2017) Artificial intelligence and robotics and their impact on the workplace. Technical report, IBA Global Employment Institute

    Google Scholar 

  • Yamauchi B (2004) PackBot: a versatile platform for military robotics. Proc SPIE 5422. https://doi.org/10.1117/12.538328

  • Yan R, Pang S, Bing Sun H, Jie Pang Y (2010) Development and missions of unmanned surface vehicle. J Marine Sci Appl 9:451–457. https://doi.org/10.1007/s11804-010-1033-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert De Cubber .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Cubber, G., Schneider, F.E. (2023). Military Robotics. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_219-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_219-2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Military Robotics
    Published:
    13 September 2023

    DOI: https://doi.org/10.1007/978-3-642-41610-1_219-2

  2. Original

    Military Robotics
    Published:
    13 April 2022

    DOI: https://doi.org/10.1007/978-3-642-41610-1_219-1