Skip to main content

The Matrix Exponential in Kinematics

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics
  • 115 Accesses

Abstract

The description of rigid-body motions using exponential coordinates has become popular in recent years both for robotic manipulator kinematics and for the description of how errors propagate in mobile robotic systems. This chapter reviews the details of the matrix exponential and logarithm for the rotation group, SO(3), and for the rigid-body-motion group, SE(3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman MK, Cheng A, Shiffman B, Boctor E, Chirikjian G (2013) Sensor calibration with unknown correspondence: solving AX = XB using Euclidean-group invariants. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13), pp 1308–1313

    Google Scholar 

  • Brockett RW (1984) Robotic manipulators and the product of exponentials formula. In: Fuhrman A (ed) Mathematical theory of networks and systems. Springer, Berlin/New York, pp 120–129

    Chapter  Google Scholar 

  • Chasles M (1840) Note sur les propriétés générales du système de deux corps semblables entre eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou infiniment petit d’un corps solide libre. Férussac, Bulletin des Sciences Mathématiques 14:321–326

    Google Scholar 

  • Chen G, Wang H, Lin Z (2014) Determination of identifiable parameters in robot calibration based on the POE formula. IEEE Trans Robot 30:1066–1077

    Article  Google Scholar 

  • Chirikjian GS (2012) Stochastic models, information theory, and Lie groups: volume 2 – analytic methods and modern applications. Birkhäuser, Boston

    Book  Google Scholar 

  • Chirikjian GS (2018) Information-theoretic matrix inequalities and diffusion processes on unimodular Lie groups. In: Nielsen F (ed) Geometric matrix inequalities. Springer, Berlin/New York

    Google Scholar 

  • Chirikjian GS, Kyatkin AB (2016) Harmonic analysis for engineers and applied scientists, Dover, July 2016

    Google Scholar 

  • Euler L (1758) Du Mouvement de Rotation des Corps Solides Autour d’un Axe Variable. Mémoires de l’Académie des Sciences de Berlin 14:154–193

    Google Scholar 

  • Euler L (1775/1776) Nova Methodus Motum Corporum Rigidorum Determinandi. Novii Comentarii AcademiæScientiarum Petropolitanæ 20:208–238

    Google Scholar 

  • Fréchet M (1953) Les Solutions Non Commutables De L’Equation Matricielle e X ⋅ e Y = e X+Y. Rendiconti Del Circulo Matematico Di Palermo, Ser. 2. 1:11–21 (1952); also 2:71–72 (1953)

    Google Scholar 

  • Golden S (1965) Lower bounds for the Helmholtz function. Phys Rev 137:B1127–B1128

    Article  MathSciNet  Google Scholar 

  • Lee S, Chirikjian GS (2004) Inter–Helical angle and distance preferences in globular proteins. Biophys J 86:1105–1117

    Article  Google Scholar 

  • Lee K, Wang Y, Chirikjian GS (2007) O(n) Mass matrix inversion for serial manipulators and polypeptide chains using lie derivatives. Robotica 25(6):739–750

    Article  Google Scholar 

  • Moler C, Van Loan C (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev 45(1):3–49

    Article  MathSciNet  Google Scholar 

  • Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Park FC (1991) The optimal kinematic design of mechanisms. Ph.D. thesis, Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA

    Google Scholar 

  • Park FC (1994) Computational aspects of the product-of-exponentials formula for robot kinematics. IEEE Trans Autom Control 39(3):643–647

    Article  Google Scholar 

  • Rodrigues O (1840) Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés independamment des causes qui peuvent les produire. J Mathématique Pures et Appliquées 5:380–440

    Google Scholar 

  • Selig JM (1996) Geometrical methods in robotics. Springer monographs in computer science, 2nd edn, 2005. Springer, New York

    Google Scholar 

  • Thompson CJ (1965) Inequality with applications in statistical mechanics. J Math Phys 6(11):1812–1813

    Article  MathSciNet  Google Scholar 

  • Wermuth EME, Brenner J, Leite FS, Queiro JF (1989) Computing matrix exponentials. SIAM Rev 31(1): 125–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chirikjian, G.S. (2021). The Matrix Exponential in Kinematics. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_142-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_142-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics