Skip to main content

Protein Kinematics

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics
  • 129 Accesses

Synonyms

Conformation and three-dimensional structure; Side chain and R-chain

Definition

Protein kinematics::

the study of a protein’s structure, mobility, and consequently its function using systematic kinematic notations

Primary structure::

the sequence of amino acids held together by peptide bonds

Secondary structure::

regular structures such as α-helices and β-sheets that appear within protein chain

Tertiary structure::

three-dimensional structure of protein molecules as one polypeptide

Quaternary structure::

the association of the two or more polypeptide in one protein structure (does not define for every protein)

Protein folding::

a process in which a protein molecule’s three-dimensional structure is shaped from its primary structure

Degree of freedom (DOF)::

the number of independent parameters needed to describe the movement of a mechanical system

Dihedral angles::

the angle between two intersecting planes

Three-dimensional structure of proteins::

Cartesian coordinates of each...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arikawa K (2016) Structural compliance analysis and internal motion properties of proteins from a robot kinematics perspective: formulation of basic equations. ASME J Mech Robot 8:021028. https://doi.org/10.1115/1.4032588

    Article  Google Scholar 

  • Bohnenkamp P, Kazerounian K, Ilies HT (2007) Structural prediction of peptide based nano systems via progressive landscape evolution. In: Proc 12th IFToMM World Congress, pp 1–6

    Google Scholar 

  • Branden C, Tooze J (1999) Introduction to protein structure, 2nd edn. Garland Publishing, New York

    Google Scholar 

  • Brooks CL III, Pettitt BM, Karplus M (1985) The effects of terminating long-ranged forces in fluids. J Chem Phys 83:5897–5908

    Article  Google Scholar 

  • Carnevali P, Toth G, Toubassi G, Meshkat SN (2003) Fast protein structure prediction using Monte Carlo simulations with modal moves. J Am Chem Soc 125:14244–14245

    Article  Google Scholar 

  • Chakrabarty A, Cagin T (2010) Coarse grain modeling of polyimide copolymers. Polymer 51:2786–2794. https://doi.org/10.1016/j.polymer

    Article  Google Scholar 

  • Cheng H, Greengard L, Rokhlin V (1999) A fast adaptive multipole algorithm in three dimensions. Journal of computational physics 155(2):468–498

    Google Scholar 

  • Chirikjian GS, Kazerounian K, Mavroidis C (2005) Analysis and design of protein based nanodevices: challenges and opportunities in mechanical design. J Mech Des 127:695–698

    Article  Google Scholar 

  • Chun HM, Padilla CE, Chin DN, Watenabe M, Karlov VI, Alper HE, Soosaar K, Blair KB, Becker OM, Caves LSD, Nagle R, Haney DN, Farmer BLM (2000) A multibody method for long-time molecular dynamics simulations. J Comput Chem 21:159–184

    Article  Google Scholar 

  • Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 22:215–221

    Article  MathSciNet  Google Scholar 

  • Diez M, Petuya V, Martínez-Cruz LA, Hernández A (2011) A biokinematic approach for the computational simulation of proteins molecular mechanism. Mech Mach Theory 46:1854–1868

    Article  Google Scholar 

  • Eastman P, Pande VS (2010) Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. J Comput Chem 31:1268–1272

    Google Scholar 

  • Esselink K (1995) A comparison of algorithms for long-range interactions. Comput Phys Commun 87:375–395

    Article  Google Scholar 

  • Ewald P (1921) Evaluation of optical and electrostatic lattice potentials. Ann Phys 64:253–287

    Article  Google Scholar 

  • Gogu G (2005) Chebychev–Grübler–Kutzbach’s criterion for mobility calculation of multi-loop mechanisms revisited via theory of linear transformations. Eur J Mech A Solids 24:427–441

    Article  MathSciNet  Google Scholar 

  • Greengard L, Rokhlin V (1997) A fast algorithm for particle simulations. J Comput Phys 135:280–292

    Article  Google Scholar 

  • Gupta KC (1986) Kinematic analysis of manipulators using the zero reference position description. Int J Robot Res 5:5–13

    Article  Google Scholar 

  • Haghshenas-Jaryani M, Bowling A (2014) Modeling flexibility in myosin V using a multiscale articulated multi-rigid body approach. ASME J Comput Nonlinear Dyn 10:011015–011025

    Article  Google Scholar 

  • Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility predictions using graph theory. Proteins 44:150–165

    Article  Google Scholar 

  • Jimenez-Roldan JE, Freedman RB, Römer RA, Wells SA (2012) Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses. Phys Biol 9:016008–016019

    Article  Google Scholar 

  • Kazerounian K (2004a) From mechanisms and robotics to protein conformation and drug design. ASME J Mech Des 126:40–45. https://doi.org/10.1115/1.1644554

    Article  Google Scholar 

  • Kazerounian K, Latif K, Rodriguez K, Alvarado C (2004b) Nano-kinematics for analysis of protein molecules. ASME J Mech Des 127:699–711. https://doi.org/10.1115/1.1867956

    Article  Google Scholar 

  • Kazerounian K, Latif K, Alvarado C (2004c) Protofold: a successive kinetostatic compliance method for protein conformation prediction. ASME J Mech Des 127:712–717. https://doi.org/10.1115/1.1867502

    Article  Google Scholar 

  • Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488–490. https://doi.org/10.1016/S0968-0004(97)01140-7

    Article  Google Scholar 

  • Levinthal C (1969) How to fold graciously. In: Massbauer Spectroscopy in Biological Systems: proceedings of a meeting held at Allerton House, Monticello, pp 22–24. Archived from the original on 2010-10-07

    Google Scholar 

  • Malczyk P, Fr?czek J (2015) Molecular dynamics simulation of simple polymer chain formation using divide and conquer algorithm based on the augmented Lagrangian method. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 229(2):116–131

    Google Scholar 

  • Manocha D, Zhu Y, Wright W (1995) Conformational analysis of molecular chains using nano-kinematics. Bioinformatics 11:71–86

    Article  Google Scholar 

  • Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  Google Scholar 

  • Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Amber a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  Google Scholar 

  • Pimentel TAPF, Yan Z, Jeffers SA, Holmes KV, Hodges RS, Burkhard P (2009) Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem Biol Drug Des 73:53–61

    Article  Google Scholar 

  • Poursina M, Anderson KS (2012) Long-range force and moment calculations in multiresolution simulations of molecular systems. J Comput Phys 231:7237–7254

    Article  MathSciNet  Google Scholar 

  • Poursina M, Anderson KS (2013) Canonical ensemble simulation of biopolymers using a coarse grained articulated generalized divide-and-conquer scheme. Comput Phys Commun 184:652–660

    Article  MathSciNet  Google Scholar 

  • Poursina M, Anderson KS (2014) An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations. J Comput Phys 270:613–633

    Article  MathSciNet  Google Scholar 

  • Poursina M, Anderson KS (2018) Optimization problem and efficient partitioning algorithm for transitions to finer-scale models in adaptive resolution simulation of articulated biopolymers. Multibody Syst Dyn 42:97–117

    Article  MathSciNet  Google Scholar 

  • Poursina M, Bhalerao KD, Flores S, Anderson KS, Laederach A (2011) Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. Methods Enzymol 487:73–98

    Article  Google Scholar 

  • Rossi R, Isorce M, Morin S, Flocard J, Arumugam K, Crouzy S, Vivaudou M, Redon S (2007) Adaptive torsion-angle quasi-statics: a general simulation method with applications to protein structure analysis and design. Bioinformatics 23:408–417

    Article  Google Scholar 

  • Schuyler AD, Chirikjian GS (2003) Normal mode analysis of proteins: a comparison of rigid cluster modes with C(alpha) coarse graining. J Mol Graph Model 22:183–193

    Article  Google Scholar 

  • Shahbazi Z (2015) Mechanical model of hydrogen bonds in protein molecules. Am J Mech Eng 3:47–54. https://doi.org/10.12691/ajme-3-2-3

    Article  Google Scholar 

  • Shahbazi Z, Demirtas A (2015) Rigidity analysis of protein molecules. ASME J Comput Inf Sci Eng 15:031009. https://doi.org/10.1115/1.4029977

    Article  Google Scholar 

  • Shahbazi Z, Ilies H, Kazerounian K (2010a) Hydrogen bonds and kinematic mobility of protein molecules. J Mech Robot 2:021009–021017

    Article  Google Scholar 

  • Shahbazi Z, Pimentel TAPF, Ilies H, Kazerounian K, Burkhard P (2010b) A kinematic observation and conjecture for stable construct of a peptide nanoparticle. In: Lenarcic J, Stanisoc M (eds) Advances in robot kinematics, issue on motion in man and machine. Springer, Berlin. ISBN 978-90-481-9261-8

    Google Scholar 

  • Song G, Amato NM (2004) A motion-planning approach to folding: from paper craft to protein folding. IEEE Trans Robot Autom 20:60–71

    Article  Google Scholar 

  • Subramanian R, Kazerounian K (2006) Improved molecular model of a peptide unit for proteins. ASME J Mech Des 129:1130–1136. https://doi.org/10.1115/1.2771230

    Article  Google Scholar 

  • Tavousi P (2018) Approximating net interactions among rigid domains. PLoS One 13:e0195618

    Article  Google Scholar 

  • Tavousi P, Behandish M, IlieÅŸ HT, Kazerounian K (2016a) Protofold II: enhanced model and implementation for kinetostatic protein folding. ASME J Nanotechnol Eng Med 6:034601–034624. https://doi.org/10.1115/1.4032759

    Article  Google Scholar 

  • Tavousi P, Kazerounian K, Ilies H (2016b) Synthesizing functional mechanisms from a link soup. ASME J Mech Des 138:062303–062315. https://doi.org/10.1115/1.4033394

    Article  Google Scholar 

  • Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150

    Article  Google Scholar 

  • Voltz K, Trylska J, Tozzini V, Kurkal-Siebert V, Langowski J, Smith J (2008) Coarse-grained force field for the nucleosome from self-consistent multiscaling. J Comput Chem 29:1429–143979

    Article  Google Scholar 

  • Wagner I, Musso H (1983) New naturally occurring amino acids. Angew Chem Int Ed Eng 22:816–828. https://doi.org/10.1002/anie.198308161

    Article  Google Scholar 

  • Wu XW, Sung SS (1998) Constraint dynamics algorithm for simulation of semi flexible macromolecules. J Comput Chem 19:1555–1566

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Shahbazi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shahbazi, Z., Poursina, M. (2021). Protein Kinematics. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_139-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_139-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics