Skip to main content

Chemical Composition of Cereals and Their Products

  • Living reference work entry
  • First Online:
Handbook of Food Chemistry

Abstract

Humans have a history of cultivating cereal crops and utilizing their grains to prepare various types of food for thousands of years. The most popular cereal products available in the market include bread, cookies/biscuits, cakes, pasta, noodles, and extruded snacks and breakfast cereals. They are an important part of our daily diets and provide energy and essential nutrients for human health. Cereal grains contain starch and protein as the major components and lipid, non-starch carbohydrates, phytic acid, vitamins, and minerals as the minor components. Physical interactions and chemical reactions occur between these constituents during the processing and storage of cereal products, which determine their quality, storage stability, and nutritional value. With an increasing population of people suffering from celiac disease, diabetes, obesity, and other metabolic syndrome, there are opportunities and challenges for the food industry to develop healthier cereal products through utilizing novel ingredients and improving processing technologies. This book chapter offers a good review of chemical compositions of different cereal grains, processing technologies applied to produce various cereal foods, and future trends of research and product development in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • AACC (2000) Approved methods of the AACC, 10th edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • AACC (2001) The definition of dietary fiber. Cereal Foods World 46:112–126

    Google Scholar 

  • Alaedini A, Green PHR (2005) Narrative review: celiac disease: understanding a complex autoimmune disorder. Ann Intern Med 142:289–298

    Article  CAS  Google Scholar 

  • Allen KE, Carpenter CE, Walsh MK (2007) Influence of protein level and starch type on an extrusion-expanded whey product. Int J Food Sci Technol 42:953–960

    Article  CAS  Google Scholar 

  • Antognelli C (1980) The manufacture and applications of pasta as a food and as a food ingredient – a review. J Food Technol 15:125–145

    Article  CAS  Google Scholar 

  • Baik MY, Chinachoti P (2000) Moisture redistribution and phase transitions during bread staling. Cereal Chem 77:484–488

    Article  CAS  Google Scholar 

  • Belton PS (1999) On the elasticity of wheat gluten. J Cereal Sci 29:103–107

    Article  CAS  Google Scholar 

  • Bennion EB, Bamford GST, Bent AJ (1997) Cake-making processes. In: Bent AJ (ed) The technology of cake making, 6th edn. Springer, New York, pp 251–274

    Chapter  Google Scholar 

  • Cauvain SP (2007) Bread-the product. In: Cauvain SP, Young LS (eds) Technology of breadmaking, 2nd edn. Springer, New York, pp 1–19

    Chapter  Google Scholar 

  • Chinnaswamy R (1993) Basis of cereal starch expansion. Carbohydr Polym 21:157–167

    Article  CAS  Google Scholar 

  • Chinnaswamy R, Hanna MA (1988) Expansion, color and shear-strength properties of corn starches extrusion-cooked with urea and salts. Starch-Starke 40:186–190

    Article  CAS  Google Scholar 

  • Cho IH, Peterson DG (2010) Chemistry of bread aroma: a review. Food Sci Biotechnol 19:575–582

    Article  CAS  Google Scholar 

  • Conforti FD (2006) Cake manufacture. In: Hui YH (ed) Bakery products: science and technology. Blackwell, Oxford, pp 393–410

    Chapter  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  • D’Ovidio R, Masci S (2004) The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39:321–339

    Article  Google Scholar 

  • Delcour JA, Hoseney RC (2010) Principles of cereal science and technology. American Association of Cereal Chemists, Saint Paul

    Book  Google Scholar 

  • Dexter JE (2004) Grain, paste products: pasta and Asian noodles. In: Smith JS, Hui YH (eds) Food processing: principles and applications. Blackwell, Oxford, pp 249–271

    Chapter  Google Scholar 

  • Dexter JE, Matsuo RR (1980) Relationship between durum-wheat protein-properties and pasta dough rheology and spaghetti cooking quality. J Agric Food Chem 28:899–902

    Article  CAS  Google Scholar 

  • Doblado-Maldonado AF, Pike OA, Sweley JC, Rose DJ (2012) Key issues and challenges in whole wheat flour milling and storage. J Cereal Sci 56:119–126

    Article  Google Scholar 

  • Donelson JR, Gaines CS (1998) Starch-water relationships in the sugar-snap cookie dough system. Cereal Chem 75:660–664

    Article  CAS  Google Scholar 

  • Finley JW, Verduin P, Arciszewski HE, Biggs RH (1992) Cookies with reduced sucrose content and doughs for production thereof. US Patent Office, Patent No 5,080,919

    Google Scholar 

  • Fu BX (2008) Asian noodles: history, classification, raw materials, and processing. Food Res Int 41:888–902

    Article  CAS  Google Scholar 

  • Gaines CS (1985) Associations among soft wheat-flour particle-size, protein-content, chlorine response, kernel hardness, milling quality, white layer cake volume, and sugar-snap cookie spread. Cereal Chem 62:290–292

    CAS  Google Scholar 

  • Garber BW, Hsieh F, Huff HE (1997) Influence of particle size on the twin-screw extrusion of corn meal. Cereal Chem 74:656–661

    Article  CAS  Google Scholar 

  • Goesaert H, Slade L, Levine H, Delcour JA (2009) Amylases and bread firming – an integrated view. J Cereal Sci 50:345–352

    Article  CAS  Google Scholar 

  • Gomez MH, Waniska RD, Rooney LW, Lusas EW (1988) Extrusion-cooking of sorghum containing different amounts of amylose. J Food Sci 53:1818–1822

    Article  CAS  Google Scholar 

  • Granfeldt Y, Bjorck I (1991) Glycemic response to starch in pasta – a study of mechanisms of limited enzyme availability. J Cereal Sci 14:47–61

    Article  Google Scholar 

  • Gray JA, BeMiller JN (2003) Bread staling: molecular basis and control. Compr Rev Food Sci Food Saf 2:1–21

    Article  CAS  Google Scholar 

  • Heenan SP, Dufour JP, Hamid N, Harvey W, Delahunty CM (2008) The sensory quality of fresh bread: descriptive attributes and consumer perceptions. Food Res Int 41:989–997

    Article  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147:342–347

    Article  CAS  Google Scholar 

  • Hou G (2001) Oriental noodles. Adv Food Nutr Res 43:141–193

    Article  CAS  Google Scholar 

  • Hou GG, Otsubo S, Okusu H, Shen L (2010) Noodle processing technology. In: Hou GG (ed) Asian noodles: science, technology, and processing. Wiley, Hoboken, pp 99–140

    Chapter  Google Scholar 

  • Hou GG, Saini R, Ng PKW (2013) Relationship between physicochemical properties of wheat flour, wheat protein composition, and textural properties of cooked Chinese white salted noodles. Cereal Chem 90:419–429

    Article  CAS  Google Scholar 

  • Hsieh F, Peng IC, Huff HE (1990) Effects of salt, sugar and screw speed on processing and product variables of corn meal extruded with a twin-screw extruder. J Food Sci 55:224–227

    Article  Google Scholar 

  • Jane J (2009) Structural features of starch granules II. In: BeMiller JN, Whistler RL (eds) Starch: chemistry and technology, 3rd edn. Academic, New York, pp 193–236

    Chapter  Google Scholar 

  • Kannadhason S, Muthukumarappan K, Rosentrater KA (2011) Effect of starch sources and protein content on extruded aquaculture feed containing DDGS. Food Bioprocess Technol 4:282–294

    Article  CAS  Google Scholar 

  • Kasemsuwan T, Bailey T, Jane J (1998) Preparation of clear noodles with mixtures of tapioca and high-amylose starches. Carbohydr Polym 36:301–312

    Article  CAS  Google Scholar 

  • Kissell LT, Marshall BD, Yamazaki WT (1973) Effect of variability in sugar granulation on evaluation of flour cookie quality. Cereal Chem 50:255–264

    Google Scholar 

  • Lamacchia C, Camarca A, Picascia S, Di Luccia A, Gianfrani C (2014) Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients 6:575–590

    Article  Google Scholar 

  • Lin S, Hsieh F, Huff HE (1997) Effects of lipids and processing conditions on degree of starch gelatinization of extruded dry pet food. Food Sci Technol Lebensm Wiss Technol 30:754–761

    Article  CAS  Google Scholar 

  • Lin S, Huff HE, Hsieh F (2000) Texture and chemical characteristics of soy protein meat analog extruded at high moisture. J Food Sci 65:264–269

    Article  CAS  Google Scholar 

  • Lu Z, Collado LS (2010) Rice and starch-based noodles. In: Hou GG (ed) Asian noodles: science, technology, and processing. Wiley, Hoboken, pp 393–431

    Chapter  Google Scholar 

  • Manthey FA, Twombly W (2005) Extruding and drying of pasta. In: Hui YH (ed) Handbook of food science, technology, and engineering. CRC Press, Boca Raton, pp 158.1–158.15

    Google Scholar 

  • Martin ML, Zeleznak KJ, Hoseney RC (1991) A mechanism of bread firming. 1. Role of starch swelling. Cereal Chem 68:498–503

    CAS  Google Scholar 

  • Miller RA, Hoseney RC, Morris CE (1997) Effect of formula water content on the spread of sugar-snap cookies. Cereal Chem 74:669–671

    Article  CAS  Google Scholar 

  • Morita N, Maeda T, Miyazaki M, Yamamori M, Miura H, Ohtsuka I (2002) Dough and baking properties of high-amylose and waxy wheat flours. Cereal Chem 79:491–495

    Article  CAS  Google Scholar 

  • Oh NH, Seib PA, Ward AB, Deyoe CW (1985) Noodles. 4. Influence of flour protein, extraction rate, particle-size, and starch damage on the quality characteristics of dry noodles. Cereal Chem 62:441–446

    Google Scholar 

  • Osborne TB (1924) The vegetable proteins. Longmans, London

    Google Scholar 

  • Panlasigui LN, Thompson LU, Juliano BO, Perez CM, Jenkins DJA, Yiu SH (1992) Extruded rice noodles – starch digestibility and glycemic response of healthy and diabetic subjects with different habitual diets. Nutr Res 12:1195–1204

    Article  Google Scholar 

  • Papantoniou E, Hammond EW, Tsiami AA, Scriven F, Gordon MH, Schofield JD (2003) Effects of endogenous flour lipids on the quality of semisweet biscuits. J Agric Food Chem 51:1057–1063

    Article  CAS  Google Scholar 

  • Pareyt B, Delcour JA (2008) The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: a review on sugar-snap cookies. Crit Rev Food Sci Nutr 48:824–839

    Article  CAS  Google Scholar 

  • Pareyt B, Finnie SM, Putseys JA, Delcour JA (2011) Lipids in bread making: sources, interactions, and impact on bread quality. J Cereal Sci 54:266–279

    Article  CAS  Google Scholar 

  • Purlis E (2010) Browning development in bakery products – a review. J Food Eng 99:239–249

    Article  CAS  Google Scholar 

  • Ram S, Dawar V, Singh RP, Shoran J (2005) Application of solvent retention capacity tests for the prediction of mixing properties of wheat flour. J Cereal Sci 42:261–266

    Article  CAS  Google Scholar 

  • Ranawana DV, Henry CJK, Lightowler HJ, Wang D (2009) Glycaemic index of some commercially available rice and rice products in Great Britain. Int J Food Sci Nutr 60:99–110

    Article  CAS  Google Scholar 

  • Satmalee P, Charoenrein S (2009) Acceleration of ageing in rice stick noodle sheets using low temperature. Int J Food Sci Technol 44:1367–1372

    Article  CAS  Google Scholar 

  • Schieberle P, Grosch W (1992) Changes in the concentrations of potent crust odourants during storage of white bread. Flavour Fragr J 7:213–218

    Article  CAS  Google Scholar 

  • Shewry PR, D’Ovidio R, Lafiandra D, Jenkins JA, Clare-Mills EN, Bekes F (2009) Wheat grain proteins. In: Khan K, Shewry PR (eds) Wheat: chemistry and technology, 4th edn. AACC International, St. Paul, pp 223–298

    Chapter  Google Scholar 

  • Sinha NK, Yamamoto H, Ng PKW (1997) Effects of flour chlorination on soft wheat gliadins analyzed by reversed-phase high-performance liquid chromatography, differential scanning calorimetry and fluorescence spectroscopy. Food Chem 59:387–393

    Article  CAS  Google Scholar 

  • Smith JP, Daifas DP, El-Khoury W, Koukoutsis J, El-Khoury A (2004) Shelf life and safety concerns of bakery products – a review. Crit Rev Food Sci Nutr 44:19–55

    Article  CAS  Google Scholar 

  • Thomasson CA, Miller RA, Hoseney RC (1995) Replacement of chlorine treatment for cake flour. Cereal Chem 72:616–620

    CAS  Google Scholar 

  • USDA-ARS (2014) United States Department of Agriculture-Agricultural Research Service. National nutrient database for standard reference: release 27

    Google Scholar 

  • Varrianomarston E, Ke V, Huang G, Ponte J (1980) Comparison of methods to determine starch gelatinization in bakery foods. Cereal Chem 57:242–248

    CAS  Google Scholar 

  • Wasik RJ, Bushuk W (1975) Relation between molecular-weight distribution of endosperm proteins and spaghetti-making quality of wheats. Cereal Chem 52:322–328

    CAS  Google Scholar 

  • Yamamoto H, Worthington ST, Hou G, Ng PKW (1996) Rheological properties and baking qualities of selected soft wheats grown in the United States. Cereal Chem 73:215–221

    CAS  Google Scholar 

  • Yanniotis S, Petraki A, Soumpasi E (2007) Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. J Food Eng 80:594–599

    Article  CAS  Google Scholar 

  • Zhang SB, Lu QY, Yang HS, Meng DD (2011) Effects of protein content, glutenin-to-gliadin ratio, amylose content, and starch damage on textural properties of Chinese fresh white noodles. Cereal Chem 88:296–301

    Article  CAS  Google Scholar 

  • Zobel HF (1988) Starch crystal transformations and their industrial importance. Starch-Starke 40:1–7

    Article  CAS  Google Scholar 

  • Zweifel C, Handschin S, Escher F, Conde-Petit B (2003) Influence of high-temperature drying on structural and textural properties of durum wheat pasta. Cereal Chem 80:159–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Ai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tacer-Caba, Z., Nilufer-Erdil, D., Ai, Y. (2015). Chemical Composition of Cereals and Their Products. In: Cheung, P., Mehta, B. (eds) Handbook of Food Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41609-5_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41609-5_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-41609-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics