Skip to main content

Chemical Composition of Fish and Fishery Products

  • Living reference work entry
  • First Online:
Handbook of Food Chemistry

Abstract

Aquatic organisms are considered a low-fat and protein-rich source, with other nutritional components that are positively attributed to health. Some micronutrients are in general more abundant in aquatic animals and plants than mammalian meats or terrestrial vegetables. Since ancient times, fish and shellfish have been used as food, but only in the second period of the twentieth century has aquatic food gained enormous relevance. Chemical composition of fish varies greatly among species and from an individual fish to another, depending on age, sex, environment, and season. Fish is the only protein source that contains all the essential amino acids. Lipids and proteins are the major components of fish food; meanwhile carbohydrates are usually detected at very low levels (<0.5 %). Fish is an excellent source of valuable micronutrients, vitamins, and minerals; vitamin content in fish is compared to that in mammals with the exception of vitamins A, D, and B12. Fish enzymes obtained from fish offal and discards from the fishery industry are relevant owing to their applications to other food industries besides fisheries. Finally, a huge number of nutraceuticals from fish are being researched with enormous great application to human health. Hence, there is a growing demand for food from the aquatic, either marine or freshwater environment, owing to their nutritional components with health benefits to humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdullah O, Ayse O, Senol K (2011) Fatty acid composition and mineral content of Upeneus moluccensis and Mullus surmuletus. Turk J Fish Aquat Sci 11:69–75

    Google Scholar 

  • Afonso C, Lourenco HM, Pereira C, Martins MF, Carvalho ML, Castro M, Nunes ML (2008) Total and organic mercury, selenium, and á-tocopherol in some deep-water fish species. J Sci Food Agric 88:2543–2550

    CAS  Google Scholar 

  • Afonso C, Bandarra NM, Nunes L, Cardoso C (2014) Tocopherols in seafood and aquaculture products. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2012.694920

    Google Scholar 

  • Alasalvar C, Taylor K, Zubcov E, Shahidi F, Alexis M (2002) Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food Chem 79:145–150

    CAS  Google Scholar 

  • Aminullah-Bhuiyan AKM, Rathayake WMN, Ackman RG (1993) Nutritional composition of raw and smoked Atlantic mackerel (Scomber scombrus): oil and water- soluble vitamins. J Food Compos Anal 6(2):172–184

    CAS  Google Scholar 

  • Aro TL, Larmo PS, Backman CH, Kallio HP, Tahvonen R (2005) Fatty acids and fat-soluble vitamins in salted herring (Clupea harengus) products. J Agric Food Chem 53:1482–1488

    CAS  Google Scholar 

  • Barthel HR, Scharla SH (2003) Benefits beyond the bones – vitamin D against falls, cancer, hypertension and autoimmune diseases. Dtsch Med Wochenschr 128(9):440–446

    CAS  Google Scholar 

  • Begum A, Nurul Amin MD, Kaneco S, Ohta K (2005) Selected elemental composition of the muscle tissue of three species of fish, Tilapia nilotica, Cirrhina mrigala and Clarius batrachus, from the fresh water Dhanmondi Lake in Bangladesh. Food Chem 93:439–443

    CAS  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2004) Fish, whales, crustaceans, mollusks. In: Food chemistry. Springer, Berlin/Heidelberg, pp 619–642

    Google Scholar 

  • Beltcheva M, Metcheva R, Peneva V, Marinova M, Yankov Y, Chikova V (2011) Heavy metals in Antarctic notothenioid fish from South Bay, Livingston Island, South Shetlands (Antarctica). Biol Trace Elem Res 141:150–158

    CAS  Google Scholar 

  • Bendik I, Friedel A, Roos F, Weber P, Eggersdorfer M (2013) Vitamin D: a critical and essential micronutrient for human health. Front Physiol 5(article 248):1–14

    Google Scholar 

  • Bergmann W, Burker DC (1955) Contribution to the study of marine products XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J Org Chem 20:1501–1507

    CAS  Google Scholar 

  • Bilodeau L, Dufresne G, Deeks J, Clement G, Bertrand I, Ructotte S et al (2011) Determination of vitamin D3 and 25-hydroxyvitamin D3 in foodstuffs by HPLC UV-DAD and LC-MS/MS. J Food Compos Anal 24:441–448

    CAS  Google Scholar 

  • Butchova H, Svobodova Z, Velisek J (2008) Presence of amino acids in specific tissues of the two hybrids of common carp (Cyprinus carpio L.). Folia Vet 52(3–4):189–193

    Google Scholar 

  • Byrdwell WC, Horst RL, Phillips KM, Holden JM, Patterson KY, Harnly JM, Exler J (2013) Vitamin D levels in fish and shell fish determined by liquid chromatography with ultraviolet detection and mass spectrometry. J Food Compos Anal 30:109–119

    CAS  Google Scholar 

  • Byun HG, Kim SK (2001) Purification and characterization of angiotensin-I converting enzyme (ACE) inhibitor peptides from Alaska Pollock (Theragra chalcogramma) skin. Process Biochem 36:1155–1162

    CAS  Google Scholar 

  • Byun HG, Kim YT, Park XL, Kim SK (2005) Chitooligosaccharides as a novel β-secretase inhibitor. Carbohydr Polym 61:198–202

    CAS  Google Scholar 

  • Cahu C, Salen P, de Lorgeril M (2004) Farmed and wild fish in the prevention of cardiovascular diseases. Assessing possible differences in lipid nutritional values. Nutr Metab Cardiovasc Dis 14:34–41

    CAS  Google Scholar 

  • Cho SS, Lee HK, Yu CY, Kim MJ, Seong ES, Ghimire BK, Son EH, Choung MG, Lim J (2008) Isolation and characterization of bioactive peptides from Hwangtae (yellowish dried Alaska Pollack) protein hydrolysate. J Food Sci Nutr 13:196–203

    CAS  Google Scholar 

  • Copat C, Bella F, Castaing M, Fallico R, Sciacca S, Ferrante M (2012) Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull Environ Contam Toxicol 88(1):78–83

    CAS  Google Scholar 

  • Coppes Petricorena ZL (2011) Texture measurements in fish and fish products. In: Alasalvar C, Shahidi F, Miyashita K, Wanasundara V (eds) Handbook of seafood quality, safety and health applications. Wiley-Blackwell, Ames, Iowa, USA, pp 130–138

    Google Scholar 

  • Coppes Petricorena Z, Haard NF (2004) Utilization of waste from fisheries for food industry. Alim Latinoam 252:47–57 (in Spanish)

    Google Scholar 

  • Coppes Petricorena Z, Somero GN (1990) Temperature-adaptive differences between the M4-lactate dehydrogenase of stenothermal and eurythermal sciaenid fishes. J Exp Zool 254:127–131

    Google Scholar 

  • Coppes Petricorena ZL, Pavlisko A, De Vecchi S (2002) Texture measurements in fish and fish products. J Aquat Food Prod Technol 11(1):89–105

    Google Scholar 

  • De Felice SL (1994) What is a true nutraceutical and what is the nature and size of the US market? http://www.fumdefelice.org/archives/arc:whatisnut.html

  • De Vecchi S, Coppes Petricorena Z (1996) Marine fish digestive proteases – relevance to food industry and the south-west Atlantic region – a review. J Food Biochem 20(3):193–214

    Google Scholar 

  • Dias MG, Sanchez MV, Bartolo H, Oliveira L (2003) Vitamin content of fish and fish products consumed in Portugal. Electron J Environ Agric Food Chem 2(4):510–513

    Google Scholar 

  • Dort J, Sirois A, Leblanc N, Côté CH, Jacques H (2012) Beneficial effects of cod protein on skeletal muscle repair following injury. Appl Physiol Nutr Metab 37:489–498

    CAS  Google Scholar 

  • Elagba-Mohamed HA, Al-Maqbaly R, Mohamed Mansour H (2010) Proximate composition, amino acid and mineral contents of five commercial Nile fishes in Sudan. Afr J Food Sci 4(10):650–654

    CAS  Google Scholar 

  • Erkan N, Ozden O (2007) Proximate composition and mineral contents in aquacultured sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) analyzed by ICP-MS. Food Chem 102:721–725

    CAS  Google Scholar 

  • Erkan N, Selcuk A, Ozden O (2010) Amino acid and vitamin composition of raw and cooked horse mackerel. Food Anal Methods 3:269–275

    Google Scholar 

  • Fujisawa A, Dunlap WC, Yamamoto Y (2010) Vitamin E protection in the biochemical adaptation of marine organisms to cold-water environments. Comp Biochem Physiol Part B 157:145–158

    Google Scholar 

  • Garcion E, Wion-Barbot N, Montero Menei C, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13:100–105

    CAS  Google Scholar 

  • Gehring CL, Gigliotti JC, Moritz JS, Tou JC, Jaczynski J (2011) Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: a review. Food Chem 124:422–431

    CAS  Google Scholar 

  • Gildberg A, Simpson BK, Haard NF (2000) Use of enzymes from marine organisms. In Haard NF, Simpson BK (eds.) Seafood enzymes. NewYork, NY: Marcel Dekker pp 619–639

    Google Scholar 

  • Ghaly AE, Ramakrishman VV, Brooks MS, Budge SN, Dave D (2013) Fish processing wastes as a potential source of proteins, amino acids and oils: a critical review. J Microb Biochem Technol 5(4):107–129

    Google Scholar 

  • Gormley TR, Neumann T, Fagan JD, Brunton NP (2007) Taurine content of raw and processed fish fillets/portions. Eur Food Res Technol 225:837–842

    CAS  Google Scholar 

  • Gotoh N, Mashimo D, Oka T, Sekiguchi K, Tange M, Watanabe H, Noguchi N, Wada S (2011) Analyses of marine-derived tocopherol in processed foods containing fish. Food Chem 129(2):279–283

    CAS  Google Scholar 

  • Hamid AA, Baker J, Bee GH (2002) Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chem 78:69–74

    Google Scholar 

  • Hamre K (2011) Metabolism, interactions, requirements and functions of vitamin E in fish. Aquat Nutr 17:98–115

    CAS  Google Scholar 

  • Harnedy PA, Fitzgerald RJ (2013) Bioactive proteins and peptides from macroalgae, fish, shellfish and marine processing waste. In: Kim SK (ed) Marine proteins and peptides. Wiley-Blackwell, Chichester, West Sussex, UK, pp 5–39

    Google Scholar 

  • Hathwar SC, Bijinu B, Rai AK, Narahan B (2011) Simultaneous recovery of lipids and proteins by enzymatic hydrolysis of fish industry waste using different commercial proteases. Appl Biochem Biotechnol 164(1):115–124

    CAS  Google Scholar 

  • Hirao S, Yamada J, Kikuchi R (1959) Vitamin A. In: Fish Flesh. Bull. Tokai Regional Fish. Res Lab (25):49–65

    Google Scholar 

  • Holick MF (2003) Vitamin D: a millennium perspective. J Cell Biochem 88:296–307

    CAS  Google Scholar 

  • Holland B, Brown J, Bush DH (1993) Fish and fish products. In: The fifth supplement of McCance and Widdowson’s, The composition of foods. Royal Society of Chemistry, Cambridge/London

    Google Scholar 

  • Hussain MA (2011) Fish as source of n-3 polyunsaturated fatty acids (PUFAs), which one is better – farmed or wild? Adv J Food Sci Technol 3(6):455–466

    Google Scholar 

  • Ikem A, Egiebor NO (2005) Assessment of trace elements in canned fishes (mackerel, tuna, salmon, sardines and herrings) marketed in Georgia and Alabama (United States of America). J Food Compos Anal 18:771–787

    CAS  Google Scholar 

  • Iodarche A, Kulea M, Horj E, Cozar O (2011) Determination of amino acids and selenium in fish plasma. Rom J Phys 56(7–8):963–970

    Google Scholar 

  • Joshi NH, Coppes Petricorena Z (2013) Fermented seafood products. In: Mehta BM, Kamal-Eldin A, Iwanski RZ (eds) Fermentation. Effects on food properties. CRC Press, Taylor and Francis Group, Boca Baton FL, pp 285–307

    Google Scholar 

  • Jung WK, Rajapakse N, Kim SK (2005) Antioxidative activity of a low molecular weight peptides derived from the sauce of fermented blue mussels, Mytilus edulis. Eur Food Res Technol 220:535–539

    CAS  Google Scholar 

  • Kallay E, Barets P, Basna E, Kriwanen S, Bonner E, Toyokunis S, Cross HS (2002) Vitamin D receptor activity and prevention of colonic hyper-proliferation and oxidative stress. Food Chem Toxicol 40:1191–1196

    CAS  Google Scholar 

  • Kawarazuka N, Béné C (2013) The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr 14(11):1927–1938

    Google Scholar 

  • Kelleher SD, Feng Y, Hultin HO, Livingston MB (2004) Role of initial muscle pH on the solubility of fish muscle proteins in water. J Food Biochem 28(4):279–292

    CAS  Google Scholar 

  • Kim J, Lall S (2000) Amino acid composition of whole body tissue of Atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferruginea) and Japanese flounder (Paralichthys olivaceus). Aquaculture 187(3–4):367–373

    CAS  Google Scholar 

  • Kim SK, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2:1–9

    CAS  Google Scholar 

  • Kim SY, Je JY, Kim SK (2007) Purification and characterization of antioxidant peptide from hoki (Johnius balengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 18:31–38

    CAS  Google Scholar 

  • Kim SK, Ravichandran YD, Khan SB, Kim YT (2008) Prospective of the cosmeceuticals derived from marine organisms. Biotechnol Bioprocess Eng 13:511–523

    CAS  Google Scholar 

  • Kobayashi T, Tekeuchi A, Okano T (1995) Vitamin D contents in various kinds of Japanese foods. In: Burckhardt P, Heaney RP (eds) Nutritional aspects of osteoporosis 94. Ares-Serono Symposia Publications, Rome, pp 345–350

    Google Scholar 

  • Kongsback KM, Tguksted SH, Waged MA (2008) Effect of consumption of the nutrient-dense, freshwater small fish Amblypharyngodon mola on biochemical indicators of vitamin A status in Bangladeshi children: a randomized controlled study of efficacy. Br J Nutr 99:581–597

    Google Scholar 

  • Love RM (1997) Biochemical dynamics and the quality of fresh and frozen fish. In: Hall GM (ed) Fish Processing Technology. London: Blackie Academic and Professional pub. p 1–31

    Google Scholar 

  • Lu Z, Chen TC, Zhang A, Persons KS, Kohn N, Berkowitz R et al (2007) An evaluation of the vitamin D3 content in fish: is the vitamin D content adequate to satisfy the dietary requirement for vitamin D? J Steroid Biochem Mol Biol 103:642–644

    CAS  Google Scholar 

  • Mattila P, Pironen V, Haapala R, Hirvi T, Uuusi-Rauva E (1997) Possible factors responsible for the high variation in the cholecalciferol contents of fish. J Agric Food Chem 45:3891–3896

    CAS  Google Scholar 

  • Mendis E, Rajapakse N, Byun HG, Kim SK (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci 77:2166–2178

    CAS  Google Scholar 

  • Michaelsen KF, Hoppe C, Roos N et al (2009) Choice of foods and ingredients form moderately malnourished children 6 months to 5 years of age. Food Nutr Bull 30(Suppl 3):S343–S404

    Google Scholar 

  • Militante JD, Lombardin JB (2004) Dietary taurine supplementation: hypolipidemic and antiatherogenic effects. Nutr Res 24:787–801

    CAS  Google Scholar 

  • Mnari-Bhouri A, Bouhlel I, Chouba M, Hammami-El Cafsi M, Chaouch A (2010) Total lipid content, fatty acid and mineral compositions of muscles and liver of wild and farmed sea bass (Dicentrarchus labrax). Afr J Food Sci 4(8):522–530

    CAS  Google Scholar 

  • Mohammed MO, Alim DI (2012) Amino acids contents of four commercial Nile fishes in Sudan. Afr J Environ Sci Technol 6(2):142–145

    CAS  Google Scholar 

  • Nakamura T, Nagayama K, Kawaguchi S (1994) High tocopherol content in a brown alga Ishige okamurae. Fish Sci 60(6):793–794

    CAS  Google Scholar 

  • Nishioka M, Kanosue F, Tanioka Y, Miyamoto E, Watanabe F (2006) Characterization of vitamin B12 in skipjack meats and loss of the vitamin from the fish meats by various cooking conditions. Vitamins 80:507–511

    CAS  Google Scholar 

  • Nishioka M, Tanioka Y, Miyamoto E, Enomoto T, Watanabe F (2007) TLC analysis of a corrinod compound from dark muscle of the yellowfin tuna (Thunnus albacares). J Liq Chrom Rel Technol 30:1–8

    Google Scholar 

  • Nunes ML, Bandarra NM, Oliveira L, Batista I, Calhau MA (2006) Composition and nutritional value of fishery products consumed in Portugal. In: Luten JB, Jacobsen C, Behaert K, Saebo A, Oehlenschläger J (eds) Seafood research from fish to dish. Quality, safety and processing of wild and farmed fish. Wageningen Academic, Wageningen, Wiley-Blackwell, Ames, Iowa, pp 447–487

    Google Scholar 

  • Nunes ML, Bandarra NM, Batista I (2011) Health benefits associated with seafood consumption. In: Alasalvar C, Shahidi F, Miyashita K, Wanasundara U (eds) Handbook of seafood quality, safety and health. Wiley-Blackwell, Ames, Iowa, USA pp 369–379

    Google Scholar 

  • Osibona AO, Kusemiju K, Akande GR (2009) Fatty acid composition and amino acid profile of two freshwater species, African catfish (Clarias gariepinus) and Tilapia (Tilapia zillii). Afr J Food Agric Nutr Dev 9(1):608–621

    Google Scholar 

  • Ostermeyer U, Schmidt T (2006) Vitamin D and provitamin D in fish. Determination by HPLC with electrochemical detection. Eur Food Res Technol 222:403–413

    CAS  Google Scholar 

  • Ozden O (2005) Changes in amino acid and fatty acid composition during shelf-life of marinated fish. J Sci Food Agric 85:2015–2020

    CAS  Google Scholar 

  • Ozden O, Erkan N, Ulusoy S (2010) Determination of mineral composition in three commercial fish species (Solea solea, mullus surmuletus and merlangius merlangus). Environ Monit Assess 170(1–4):353–363

    Google Scholar 

  • Pawar SM, Sonawane SR (2013) Fish muscle protein highest source of energy. Int J Biodivers Conserv 5(7):433–435

    Google Scholar 

  • Pervin T, Yeasmin S, Islam R, Kamruzzaman A, Rahman A, Sattar A (2012) Studies on nutritional composition and characterization of lipids of Lates calcarifer (Bhetki). Bangladesh J Sci Ind Res 47(4):393–400

    CAS  Google Scholar 

  • Praparsi P, Kunchit J, Eakkarach K (1999) Proximate composition of raw and cooked Thai freshwater and marine fish. J Food Compos Anal 12:9–16

    Google Scholar 

  • Qari AS, Moharram GS, Alowaldi AS (2013) Amino acids profile in gonads of the red sea fish Rhabdosargus sarba during breeding season. Int J Pharm Med Biol Sci 2(3):51–59

    Google Scholar 

  • Qian ZJ, Jung WK, Byun HG, Kim SK (2008) Protective effect of an antioxidant peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour Technol 99:3365–3371

    CAS  Google Scholar 

  • Ravichandran S, Kumaravel K, Florence PE (2011) Nutritive composition of some edible fin fishes. Int J Zool Res 7:241–251

    CAS  Google Scholar 

  • Remya J, Vineeth K (2013) Variation of amino acids in white and red meat of Skipjack tuna (Katsuwonus pelamis) caught from Arabian Sea. Int J Innov Res Sci Eng Technol 2(7):2843–2846

    Google Scholar 

  • Rittenschober D, Nowak V, Charrondiere UR (2013) Review of availability of food composition data for fish and shellfish. Food Chem 141:4303–4310

    CAS  Google Scholar 

  • Rivas A, Peña-Rivas L, Ortega E, Lopez-Martinez C, Olea Serrano F, Lorenzo ML (2014) Mineral element contents in commercially valuable fish species in Spain. Sci World J Article ID 949364. 7 p

    Google Scholar 

  • Roos N, Chamnan C, Loeung D et al (2007a) Freshwater fish as a dietary source of vitamin A in Cambodia. Food Chem 103:1104–1111

    CAS  Google Scholar 

  • Roos N, Wahab MA, Chapman C et al (2007b) The role of fish in food-based strategies to combat vitamin A and mineral deficiencies in developing countries. J Nutr 137:1106–1109

    CAS  Google Scholar 

  • Roy PK, Lall SP (2006) Mineral nutrition of haddock Melanogrammus aeglefinus (L.): a comparison of wild and cultured stock. J Fish Biol 68:1460–1472

    CAS  Google Scholar 

  • Schmid A, Walther B (2013) Natural vitamin D content in animal products. Adv Nutr 4:453–462

    CAS  Google Scholar 

  • Schulz H (1986) Serum and tissue levels of tocopherols in cultured turbot (Scophthalmus maximus L.) fed vitamin E enriched diets. J Appl Ichthyol 2(3):117–124

    CAS  Google Scholar 

  • Sheih IC, Fang TJ, Wu TK (2009) Isolation and characterization of a novel angiotensin I-converting enzyme (ACE) inhibitor peptide from the algae protein waste. Food Chem 115:279–284

    CAS  Google Scholar 

  • Sivaperumal P, Sankar TV, Nair PGV (2007) Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chem 102:612–620

    CAS  Google Scholar 

  • Skibniewska KA, Zakrzewski J, Klobukowski J, Bialowias H, Mickowska B, Guziur J, Walczak Z, Szarek J (2013) Nutritional value of the protein of consumer carp Cyprinus carpio L. Czech J Food Sci 31(4):313–317

    CAS  Google Scholar 

  • Slizyte R, Mozuraityte R, Martinez-Alvarez O, Falch E, Fouchereau-Peron M, Rustad T (2009) Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochem 44:668–677

    CAS  Google Scholar 

  • Sures B, Steiner W, Rydlo M, Taraschewski H (1999) Concentrations of 17 elements in the Zebra Mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee, Austria. Environ Toxicol Chem 18:2574–2579

    CAS  Google Scholar 

  • Takeuchi A, Okano T, Ayame M, Yoshikawa H, Teraoka S, Murakami Y et al (1984) High performance liquid chromatography determination of vitamin D3 in fish liver oils and eel body oils. J Nutr Sci Vitaminol 30:421–430

    CAS  Google Scholar 

  • Takeuchi A, Okano T, Sayamoto M, Sawamura S, Kobayashi T, Moosugi M et al (1986) Tissue distribution of 7-dehydrocholesterol, vitamin D3 and 25-hydroxyvitamin D3 in several species of fishes. J Nutr Sci Vitaminol 32:13–22

    CAS  Google Scholar 

  • Turkmen M, Turkmen A, Tepe Y, Ates A, Gokkus K (2008) Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish species. Food Chem 108(2):794–800

    CAS  Google Scholar 

  • Tuzen M (2009) Toxic and essential trace elemental content in fish species from the Black Sea, Turkey. Food Chem Toxicol 47(8):1785–1790

    CAS  Google Scholar 

  • Vareltzis K (2000) Fish proteins from unexploited and underdeveloped sources. In: Doxastakis G, Kiosseoglou V (eds) Novel macromolecules in food systems. Elsevier, Amsterdam, pp 133–159

    Google Scholar 

  • Venugopal V (2009) Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. In: Mazza G (ed) Seafood proteins: functional properties and protein supplements. CRC Press, Boca Raton, pp 51–102

    Google Scholar 

  • Venugopal V, Shahidi F (1996) Structure and composition of fish muscle. Food Rev Int 12(2):175–197

    Google Scholar 

  • Vercruysse L, Camp JV, Smaggle G (2005) ACE inhibitor peptides derived from enzymatic hydrolysates of animal muscle protein: a review. J Agric Food Chem 53:8106–8115

    CAS  Google Scholar 

  • Watanabe F, Katsura H, Takenaka S, Enomoto T, Miyamoto E, Nakatsuka T, Nakano Y (2001) Characterization of vitamin B12 compounds from edible shellfish, clam, oyster, and mussel. Int J Food Sci Nutr 52:263–268

    CAS  Google Scholar 

  • Xie CL, Kim JS, Ha JM, Choung SY, Choi YJ (2014) Angiotensin I-converting enzyme inhibitor derived from cross-linked oyster protein. Biomed Res Int Article ID 379234. doi:10.1155/2014/379234. 9 p

    Google Scholar 

  • Yesilayer N, GENC N (2013) Comparison of proximate and fatty acid compositions of wild brown trout and farmed rainbow trout. South Afr J Anim Sci 43(1):89–97

    CAS  Google Scholar 

  • Yoshida H, Takahashi Y, Terashima M (2003a) A simplified reaction model for production of oil, amino acid and organic acids from fish meat by hydrolysis under subcritical and super critical conditions. J Chem Eng Jpn 36:441–448

    CAS  Google Scholar 

  • Yoshida Y, Niki E, Noguchi N (2003b) Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chem Phys Lipids 123:63–75

    CAS  Google Scholar 

  • Zhu X, Zhu C, Zha L, Cheng H (2008) Amino acids production from fish protein hydrolysis in subcritical water. Chin J Chem Eng 16(3):456–460

    CAS  Google Scholar 

  • Zuraini A, Somchit MN, Solihah MH, Goh YM, Arifah AK, Zakaria MS, Somchit N, Rajion MA, Zakaria ZA, Mat Jais AM (2006) Fatty acid and amino acid composition of three local Malaysian Channa spp. fish. Food Chem 97:674–678

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulema Coppes Petricorena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Petricorena, Z.C. (2014). Chemical Composition of Fish and Fishery Products. In: Cheung, P. (eds) Handbook of Food Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41609-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41609-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-41609-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics