Skip to main content

Proton Modulation of Cardiac I Na: A Potential Arrhythmogenic Trigger

  • Chapter
  • First Online:
Voltage Gated Sodium Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 221))

Abstract

Voltage-gated sodium (NaV) channels generate the upstroke and mediate duration of the ventricular action potential, thus they play a critical role in mediating cardiac excitability. Cardiac ischemia triggers extracellular pH to drop as low as pH 6.0, within just 10 min of its onset. Heightened proton concentrations reduce sodium conductance and alter the gating parameters of the cardiac-specific voltage-gated sodium channel, NaV1.5. Most notably, acidosis destabilizes fast inactivation, which plays a critical role in regulating action potential duration. The changes in NaV1.5 channel gating contribute to cardiac dysfunction during ischemia that can cause syncope, cardiac arrhythmia, and even sudden cardiac death. Understanding NaV channel modulation by protons is paramount to treatment and prevention of the deleterious effects of cardiac ischemia and other triggers of cardiac acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriel H, Cabo C, Wehrens XHT, Rivolta I, Motoike HK, Memmi M, Napolitano C, Priori SG, Kass RS (2001) Novel arrhythmogenic mechanism revealed by a long-QT syndrome mutation in the cardiac Na channel. Circulation Res 88:740

    Article  PubMed  CAS  Google Scholar 

  • Allen NM, Azam M, Dunne KP, Walsh KP (2011) Idiopathic ventricular tachycardia in a newborn: immediate response to lidocaine. Pediatr Cardiol 32:706–707

    Article  PubMed  Google Scholar 

  • Antzelevitch C, Belardinelli L (2006) The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis. J Cardiovasc Electrophysiol 17(Suppl 1):S79–S85

    Article  PubMed Central  PubMed  Google Scholar 

  • Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, DI Diego JM, Fish JM, Cordeiro JM, Thomas G (2004) Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110:904–910

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel II. Gating current experiments. J Gen Physiol 70:567–590

    Article  PubMed  CAS  Google Scholar 

  • Balser JR, Nuss HB, Chiamvimonvat N, Perez-Garcia MT, Marban E, Tomaselli GF (1996) External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J Physiol 494(Pt 2):431–442

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baroudi G, Carbonneau E, Pouliot V, Chahine M (2000) SCN5A mutation (T1620M) causing Brugada syndrome exhibits different phenotypes when expressed in Xenopus oocytes and mammalian cells. FEBS Lett 467:12–16

    Article  PubMed  CAS  Google Scholar 

  • Benzing H, Gebert G, Strohm M (1971) Extracellular acid–base changes in the dog myocardium during hypoxia and local ischemia, measured by means of glass micro-electrodes. Cardiology 56:85–88

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel I. Sodium current experiments. J Gen Physiol 70:549–566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bountra C, Vaughan-Jones RD (1989) Effect of intracellular and extracellular pH on contraction in isolated, mammalian cardiac muscle. J Physiol 418:163–187

    PubMed Central  PubMed  CAS  Google Scholar 

  • Campbell DT (1983) Sodium channel gating currents in frog skeletal muscle. J Gen Physiol 82:679–701

    Article  PubMed  CAS  Google Scholar 

  • Campbell DT, Hahin R (1984) Altered sodium and gating current kinetics in frog skeletal muscle caused by low external pH. J Gen Physiol 84:771–788

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017

    PubMed  CAS  Google Scholar 

  • Chaitman BR (2006) Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation 113:2462–2472

    Article  PubMed  Google Scholar 

  • Chang JH, Weng TI, Fang CC (2009) Long QT syndrome and torsades de pointes induced by acute sulpiride poisoning. Am J Emerg Med 27(1016):e1–e3

    Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Crampin EJ, Smith NP, Langham AE, Clayton RH, Orchard CH (2006) Acidosis in models of cardiac ventricular myocytes. Philos Trans A Math Phys Eng Sci 364:1171–1186

    Article  PubMed  CAS  Google Scholar 

  • Cukierman S, Zinkand WC, French RJ, Krueger BK (1988) Effects of membrane surface charge and calcium on the gating of rat brain sodium channels in planar bilayers. J Gen Physiol 92:431–447

    Article  PubMed  CAS  Google Scholar 

  • Errington AC, Stohr T, Heers C, Lees G (2008) The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 73:157–169

    Article  PubMed  CAS  Google Scholar 

  • Favre I, MOCZYDLOWSKI E, SCHILD L (1996) On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J 71:3110–3125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fry CH, Poole-Wilson PA (1981) Effects of acid–base changes on excitation–contraction coupling in guinea-pig and rabbit cardiac ventricular muscle. J Physiol 313:141–160

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gebert G, Benzing H, Strohm M (1971) Changes in the interstitial pH of dog myocardium in response to local ischemia, hypoxia, hyper- and hypocapnia, measured continuously by means of glass microelectrodes. Pflugers Arch 329:72–81

    Article  PubMed  CAS  Google Scholar 

  • Goldin AL (1993) Accessory subunits and sodium channel inactivation. Curr Opin Neurobiol 3:272–277

    Article  PubMed  CAS  Google Scholar 

  • Green WN, Weiss LB, Andersen OS (1987) Batrachotoxin-modified sodium channels in planar lipid bilayers. Characterization of saxitoxin- and tetrodotoxin-induced channel closures. J Gen Physiol 89:873–903

    Article  PubMed  CAS  Google Scholar 

  • Groome JR, Dice MC, Fujimoto E, Ruben PC (2007) Charge immobilization of skeletal muscle Na + channels: role of residues in the inactivation linker. Biophys J 93:1519–1533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Groome J, Lehmann-Horn F, Holzherr B (2011) Open- and closed-state fast inactivation in sodium channels: differential effects of a site-3 anemone toxin. Channels (Austin) 5:65–78

    Article  CAS  Google Scholar 

  • Hale SL, Shryock JC, Belardinelli L, Sweeney M, Kloner RA (2008) Late sodium current inhibition as a new cardioprotective approach. J Mol Cell Cardiol 44:954–967

    Article  PubMed  CAS  Google Scholar 

  • Haufe V, Camacho JA, Dumaine R, Gunther B, Bollensdorff C, Von Banchet GS, Benndorf K, Zimmer T (2005a) Expression pattern of neuronal and skeletal muscle voltage-gated Na + channels in the developing mouse heart. J Physiol 564:683–696

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haufe V, Cordeiro JM, Zimmer T, Wu YS, Schiccitano S, Benndorf K, Dumaine R (2005b) Contribution of neuronal sodium channels to the cardiac fast sodium current INa is greater in dog heart Purkinje fibers than in ventricles. Cardiovasc Res 65:117–127

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1968) Charges and potentials at the nerve surface. J Gen Physiol 51:221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–515

    Article  PubMed  CAS  Google Scholar 

  • Hille B, Woodhull AM, Shapiro BI (1975) Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci 270:301–318

    Article  PubMed  CAS  Google Scholar 

  • Hoshi T, Armstrong CM (2012) Initial steps in the opening of a Shaker potassium channel. Proc Natl Acad Sci U S A 109:12800–12804

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones DK, Ruben PC (2008) Biophysical defects in voltage-gated sodium channels associated with long QT and Brugada syndromes. Channels (Austin) 2:70–80

    Article  Google Scholar 

  • Jones DK, Peters CH, Tolhurst SA, Claydon TW, Ruben PC (2011) Extracellular proton modulation of the cardiac voltage-gated sodium channel, NaV.15. Biophysical 101:2147–2156

    Article  CAS  Google Scholar 

  • Jones DK, Claydon TW, Ruben PC (2013a) Extracellular protons inhibit charge immobilization in the cardiac voltage-gated sodium channel. Biophysical 105:101–107

    Article  CAS  Google Scholar 

  • Jones DK, Peters CH, Allard CR, Claydon TW, Ruben PC (2013b) Proton sensors in the pore domain of the cardiac voltage-gated sodium channel. J Biol Chem 288:4782–4791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(Pt 2):337–347

    PubMed Central  PubMed  CAS  Google Scholar 

  • Keynes RD, Rojas E (1974) Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol 239:393–434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA (2002) Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol 543:71

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khan A, Kyle JW, Hanck DA, Lipkind GM, Fozzard HA (2006) Isoform-dependent interaction of voltage-gated sodium channels with protons. J Physiol 576:493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kochanek KD, Kirmeyer SE, Martin JA, Strobino DM, Guyer B (2009) Annual summary of vital statistics. Pediatrics 129:338–348

    Article  Google Scholar 

  • Kuzmenkin A, Muncan V, Jurkat-Rott K, Hang C, Lerche H, Lehmann-Horn F, Mitrovic N (2002) Enhanced inactivation and pH sensitivity of Na(+) channel mutations causing hypokalaemic periodic paralysis type II. Brain 125:835–843

    Article  PubMed  Google Scholar 

  • Leem CH, Lagadic-Gossmann D, Vaughan-Jones RD (1999) Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J Physiol 517(Pt 1):159–180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu YM, Defelice LJ, Mazzanti M (1992) Na channels that remain open throughout the cardiac action potential plateau. Biophys J 63:654–662

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Loetscher H, Niederhauser O, Kemp J, Gill R (2001) Is caspase-3 inhibition a valid therapeutic strategy in cerebral ischemia? Drug Discov Today 6:671–680

    Article  PubMed  CAS  Google Scholar 

  • Lubinski A, Lewicka-Nowak E, Kempa M, Baczynska AM, Romanowska I, Swiatecka G (1998) New insight into repolarization abnormalities in patients with congenital long QT syndrome: the increased transmural dispersion of repolarization. Pacing Clin Electrophysiol 21:172–175

    Article  PubMed  CAS  Google Scholar 

  • Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci U S A 99:4073–4078

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maier SK, Westenbroek RE, Mccormick KA, Curtis R, Scheuer T, Catterall WA (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation 109:1421–1427

    Article  PubMed  CAS  Google Scholar 

  • Makielski JC, Farley AL (2006) Na(+) current in human ventricle: implications for sodium loading and homeostasis. J Cardiovasc Electrophysiol 17(Suppl 1):S15–S20

    Article  PubMed  Google Scholar 

  • Makita N, Bennett PB, George AL (1996) Molecular determinants of B1 subunit-induced gating modulation in voltage-dependent Na + channels. J Neurosci 16:7117–7127

    PubMed  CAS  Google Scholar 

  • Makita N, Shirai N, Wang DW, Sasaki K, George AL, Kanno M, Kitabatake A (2000) Cardiac Na + channel dysfunction Brugada syndrome is aggravated by B1-subunit. Circulation 101:54–60

    Article  PubMed  CAS  Google Scholar 

  • Maltsev VA, Kyle JW, Undrovinas A (2009) Late Na + current produced by human cardiac Na + channel isoform Nav1.5 is modulated by its beta1 subunit. J Physiol Sci 59:217–225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043

    Article  PubMed  CAS  Google Scholar 

  • Mccormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  • Mccormick KA, Isom LI, Ragsdales D, Smith D, Scheuer T, Catterall W (1998) Molecular determinants of Na + channel function in the extracellular domain of b1 sununit. J Biol Chem 273:3954–3962

    Article  PubMed  CAS  Google Scholar 

  • Mccormick KA, Srinivasan J, White K, Scheuer T (1999) The extracellular domain of the b1 subunit is both necessary and sufficient for b1- like modulation of sodium channel gating. J Biol Chem 274:32638–32646

    Article  PubMed  CAS  Google Scholar 

  • Mcewen DP, Isom LL (2004) Heterophilic interactions of sodium channel {beta}1 subunits with axonal and glial cell adhesion molecules. J Biol Chem 279:52744–52752

    Article  PubMed  CAS  Google Scholar 

  • Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusie-Luna MT, Makielski JC, Ackerman MJ (2007) SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation 116:134–142

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno JD, Clancy CE (2012) Pathophysiology of the cardiac late Na current and its potential as a drug target. J Mol Cell Cardiol 52:608–619

    Article  PubMed  CAS  Google Scholar 

  • Murphy L, Renodin D, Antzelevitch C, Di Diego JM, Cordeiro JM (2011) Extracellular proton depression of peak and late Na(+) current in the canine left ventricle. Am J Physiol Heart Circ Physiol 301:H936–H944

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murphy LL, Moon-Grady AJ, Cuneo BF, Wakai RT, Yu S, Kunic JD, Benson DW, George AL Jr (2012) Developmentally regulated SCN5A splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia. Heart Rhythm 9:590–597

    Article  PubMed Central  PubMed  Google Scholar 

  • Neumcke B, Schwarz W, Stampfli R (1980) Increased charge displacement in the membrane of myelinated nerve at reduced extracellular pH. Biophys J 31:325–331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nguyen-Thi A, Ruiz-Ceretti E, Schanne OF (1981) Electrophysiologic effects and electrolyte changes in total myocardial ischemia. Can J Physiol Pharmacol 59:876–883

    Article  PubMed  CAS  Google Scholar 

  • Noble D, Noble PJ (2006) Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart 92(Suppl 4):iv1–iv5

    PubMed Central  PubMed  CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ragsdale DS, Mcphee JC, Scheuer T, Catterall WA (1994) Molecular determinants of state-dependent block of Na + channels by local anesthetics. Science 265:1724–1728

    Article  PubMed  CAS  Google Scholar 

  • Rojas E (1976) Gating mechanism for the activation of the sodium conductance in nerve membranes. Cold Spring Harb Symp Quant Biol 40:305–320

    Article  PubMed  CAS  Google Scholar 

  • Saint DA (2006) The role of the persistent Na(+) current during cardiac ischemia and hypoxia. J Cardiovasc Electrophysiol 17(Suppl 1):S96–S103

    Article  PubMed  Google Scholar 

  • Schauf CL (1983) Evidence for negative gating charges in Myxicola axons. Biophys J 42:225–231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, Molhoek P, Verheugt FW, Gersh BJ, Mccabe CH, Braunwald E (2007) Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 116:1647–1652

    Article  PubMed  CAS  Google Scholar 

  • Sheets MF, Hanck DA (2005) Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation. J Physiol 563:83–93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, Makielski JC, Ackerman MJ (2010) Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Heart Rhythm 7:771–778

    Article  PubMed Central  PubMed  Google Scholar 

  • Terlau H, Heinemann SH, Stuhmer W, Pusch M, Conti F, Imoto K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293:93–96

    Article  PubMed  CAS  Google Scholar 

  • Tester DJ, Will ML, Haglund CM, Ackerman MJ (2005) Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2:507–517

    Article  PubMed  Google Scholar 

  • Townsend C, Horn R (1997) Effect of alkali metal cations on slow inactivation of cardiac Na + channels. J Gen Physiol 110:23–33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vilin YY, Makita N, George AL, Ruben PC (1999) Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys J 77:1384–1393

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vilin YY, Peters CH, Ruben PC (2012) Acidosis differentially modulates inactivation in na(v)1.2, na(v)1.4, and na(v)1.5 channels. Front Pharmacol 3:109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wanke E, Testa PL, Prestipino G, Carbone E (1983) High intracellular pH reversibly prevents gating-charge immobilization in squid axons. Biophys J 44:281–284

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiong W, Li RA, Tian Y, Tomaselli GF (2003) Molecular motions of the outer ring of charge of the sodium channel: do they couple to slow inactivation? J Gen Physiol 122:323–332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yatani A, Brown AM, Akaike N (1984) Effect of extracellular pH on sodium current in isolated, single rat ventricular cells. J Membr Biol 78:163–168

    Article  PubMed  CAS  Google Scholar 

  • Zaccara G, Perucca P, Loiacono G, Giovannelli F, Verrotti A (2013) The adverse event profile of lacosamide: a systematic review and meta-analysis of randomized controlled trials. Epilepsia 54:66–74

    Article  PubMed  CAS  Google Scholar 

  • Zhang JF, Siegelbaum SA (1991) Effects of external protons on single cardiac sodium channels from guinea pig ventricular myocytes. J Gen Physiol 98:1065–1083

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hartmann HA, Satin J (1999) Glycosylation influences voltage-dependent gating of cardiac and skeletal muscle sodium channels. J Membr Biol 171:195–207

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C (2001) Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol Heart Circ Physiol 281:H689–H697

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, D.K., Ruben, P.C. (2014). Proton Modulation of Cardiac I Na: A Potential Arrhythmogenic Trigger. In: Ruben, P. (eds) Voltage Gated Sodium Channels. Handbook of Experimental Pharmacology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41588-3_8

Download citation

Publish with us

Policies and ethics