Skip to main content

Effects of Noise on Sound Perception in Marine Mammals

  • Chapter
  • First Online:
Animal Communication and Noise

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 2))

Abstract

For marine mammals, auditory perception plays a critical role in a variety of acoustically mediated behaviors, such as communication, foraging, social interactions, and avoidance of predators. Although auditory perception involves many other factors beyond merely hearing or detecting sounds, sound detection is a required element for perception. As with many other processes, sound detection may be adversely affected by the presence of noise. This chapter focuses on two of the most common manifestations of the effects of noise on sound detection: auditory masking and noise-induced threshold shifts. The current state of knowledge regarding auditory masking and noise-induced threshold shifts in marine mammals is reviewed, and perceptual consequences of masking and threshold shifts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • 29CFR1910.95 (2009) Occupational noise exposure. Occup Safety Health Stand 1910

    Google Scholar 

  • American National Standards Institute (2011) ANSI S1.8-1989 (R2011) American national standard reference quantities for acoustical levels, vol ANSI S1.8-1989 (R2011). Acoustical Society of America, New York

    Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49(4):1131–1139

    Article  PubMed  Google Scholar 

  • ANSI S1.1-1994 (R 2004) (1994) American national standard acoustical terminology. Acoustical Society of America, New York

    Google Scholar 

  • Au WWL (1980) Echolocation signals of the Atlantic bottlenose dolphin (Tursiops truncatus) in open waters. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, pp 251–282

    Google Scholar 

  • Au WWL, Moore PWB (1984) Receiving beam patterns and directivity indices of the Atlantic bottlenosed dolphin (Tursiops truncatus). J Acoust Soc Am 75(1):255–262

    Article  CAS  PubMed  Google Scholar 

  • Au WWL, Moore PWB (1990) Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin. J Acoust Soc Am 88(3):1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Au WWL, Carder DA, Penner R, Scronce BL (1988) Demonstration of adaptation in beluga whale echolocation. J Acoust Soc Am 93:1–14

    Google Scholar 

  • Au WWL, Branstetter BK, Benoit-Bird KJ, Kastelein RA (2009) Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises. J Acoust Soc Am 126(1):460–467

    Article  PubMed  Google Scholar 

  • Bee MA, Buschermohle M, Klump GM (2007) Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain. Eur J Neurosci 26(7):1979–1994

    Article  PubMed  Google Scholar 

  • Branstetter BK, Finneran JJ (2008) Comodulation masking release in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 124(1):625–633

    Article  PubMed  Google Scholar 

  • Branstetter BK, Mercado III E, Au WWL (2007) Representing multiple discrimination cues in a computational model of the bottlenose dolphin auditory system. J Acoust Soc Am 122 (4):2459–2468

    Google Scholar 

  • Branstetter BK, Moore PW, Finneran JJ, Tormey MN, Aihara H (2012) Directional properties of bottlenose dolphin (Tursiops truncatus) clicks, burst-pulse, and whistle sounds. J Acoust Soc Am 131(2):1613–1621

    Article  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. The MIT Press, Massachusetts

    Google Scholar 

  • Clark JG (1981) Uses and abuses of hearing loss classification. ASHA 23(7):493–500

    CAS  PubMed  Google Scholar 

  • Clark WW (1991) Recent studies of temporary threshold shifts (TTS) and permanent threshold shift (PTS) in animals. J Acoust Soc Am 90(1):155–163

    Article  CAS  PubMed  Google Scholar 

  • Clark CW, Ellison WT, Southall BL, Hatch L, Van Parijs SM, Frankel A, Ponirakis D (2009) Acoustic masking in marine ecosystems: intuitions, analysis, and implication. Mar Ecol Prog Ser 395:201–222

    Article  Google Scholar 

  • Cornsweet TN (1962) The staircase method in psychophysics. Am J Psych 75:485–491

    Article  CAS  Google Scholar 

  • de Boer E, Nuttall AL (2010) Cochlear mechanics, tuning, non-linearities. In: Fuchs PA (ed) The ear, vol 1., The Oxford handbook of auditory scienceOxford University Press, New York

    Google Scholar 

  • Dolphin WF, Au WW, Nachtigall PE, Pawloski J (1995) Modulation rate transfer functions to low-frequency carriers in three species of cetaceans. J Comp Physiol A 177(2):235–245

    Google Scholar 

  • Elliott DN, Fraser WR (1970) Fatigue and adaptation. In: Tobias JV (ed) Foundations of modern auditory theory, vol I. Academic Press, New York, pp 117–155

    Google Scholar 

  • Erbe C (2008) Critical ratios of beluga whales (Delphinapterus leucas) and masked signal duration. J Acoust Soc Am 124(4):2216–2223

    Article  PubMed  Google Scholar 

  • Finneran JJ (2010) Auditory weighting functions and frequency-dependent effects of sound in bottlenose dolphins (Tursiops truncatus) (trans: 322 C). Marine Mammals and biological oceanography annual reports: FY10. Office of Naval Research (ONR), Washington, DC

    Google Scholar 

  • Finneran JJ, Schlundt CE (2010) Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 128(2):567–570

    Article  PubMed  Google Scholar 

  • Finneran JJ, Schlundt CE (2011) Subjective loudness level measurements and equal loudness contours in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 130(5):3124–3136

    Article  PubMed  Google Scholar 

  • Finneran JJ, Schlundt CE, Carder DA, Clark JA, Young JA, Gaspin JB, Ridgway SH (2000) Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions. J Acoust Soc Am 108(1):417–431

    Article  CAS  PubMed  Google Scholar 

  • Finneran JJ, Schlundt CE, Carder DA, Ridgway SH (2002a) Auditory filter shapes for the bottlenose dolphin (Tursiops truncatus) and the white whale (Delphinapterus leucas) derived with notched noise. J Acoust Soc Am 112(1):322–328

    Article  PubMed  Google Scholar 

  • Finneran JJ, Schlundt CE, Dear R, Carder DA, Ridgway SH (2002b) Temporary shift in masked hearing thresholds (MTTS) in odontocetes after exposure to single underwater impulses from a seismic water gun. J Acoust Soc Am 111(6):2929–2940

    Article  PubMed  Google Scholar 

  • Finneran JJ, Dear R, Carder DA, Ridgway SH (2003) Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer. J Acoust Soc Am 114(3):1667–1677

    Article  PubMed  Google Scholar 

  • Finneran JJ, Carder DA, Schlundt CE, Ridgway SH (2005) Temporary threshold shift (TTS) in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones. J Acoust Soc Am 118(4):2696–2705

    Article  PubMed  Google Scholar 

  • Finneran JJ, Houser DS, Schlundt CE (2007a) Objective detection of bottlenose dolphin (Tursiops truncatus) steady-state auditory evoked potentials in response to AM/FM tones. Aquat Mammals 33(1):43–54

    Article  Google Scholar 

  • Finneran JJ, London HR, Houser DS (2007b) Modulation rate transfer functions in bottlenose dolphins (Tursiops truncatus) with normal hearing and high-frequency hearing loss. J Comp Physiol A 193:835–843

    Article  Google Scholar 

  • Finneran JJ, Schlundt CE, Branstetter B, Dear RL (2007c) Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials. J Acoust Soc Am 122(2):1249–1264

    Article  PubMed  Google Scholar 

  • Finneran JJ, Houser DS, Mase-Guthrie B, Ewing RY, Lingenfelser RG (2009) Auditory evoked potentials in a stranded Gervais’ beaked whale (Mesoplodon europaeus). J Acoust Soc Am 126(1):484–490

    Article  PubMed  Google Scholar 

  • Finneran JJ, Carder DA, Schlundt CE, Dear RL (2010a) Growth and recovery of temporary threshold shift (TTS) at 3 kHz in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 127(5):3256–3266

    Article  PubMed  Google Scholar 

  • Finneran JJ, Carder DA, Schlundt CE, Dear RL (2010b) Temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) exposed to intermittent tones. J Acoust Soc Am 127(5):3267–3272

    Article  PubMed  Google Scholar 

  • Finneran JJ, Trickey JS, Branstetter BK, Schlundt CE, Jenkins K (2011) Auditory effects of multiple underwater impulses on bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 130:2561(A)

    Google Scholar 

  • Finneran JJ, Branstetter BK, Trickey JS, Schlundt CE, Jenkins K (2012) Temporary threshold shift in bottlenose dolphins exposed to multiple air gun impulses. Paper presented at the joint industry programme on E&P sound and marine life programme review meeting II, Washington, DC

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65

    Article  Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. J Acoust Soc Am 76:50–56

    Article  CAS  PubMed  Google Scholar 

  • Hall JW, Grose JH, Haggard MP (1990) Effects of flanking band proximity, number, and modulation pattern on comodulation masking release. J Acoust Soc Am 87(1):269–283

    Article  PubMed  Google Scholar 

  • Henderson D, Hamernik RP (1986) Impulse noise: critical review. J Acoust Soc Am 80(2):569–584

    Article  CAS  PubMed  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1):1–19

    Article  PubMed  Google Scholar 

  • Holt MM, Schusterman RJ (2007) Spatial release from masking of aerial tones in pinnipeds. J Acoust Soc Am 121(2):1219–1225

    Article  PubMed  Google Scholar 

  • Holt MM, Noren DP, Veirs V, Emmons CK, Veirs S (2008) Speaking up: killer whales (Orcinus orca) increase their call amplitude in response to vessel noise. J Acoust Soc Am 125 (1):EL27–EL32

    Google Scholar 

  • Humes LE, Jesteadt W (1989) Models of the additivity of masking. J Acoust Soc Am 85(3):1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Janik VM (2000) Source levels and the estimated active space of bottlenose dolphin (Tursiops truncatus) whistles in the Moray Firth Scotland. J Comp Physiol A 186(7–8):673–680

    Article  CAS  PubMed  Google Scholar 

  • Johnson CS (1971) Auditory masking of one pure tone by another in the bottlenosed porpoise. J Acoust Soc Am 49 (4 (part 2)):1317–1318

    Google Scholar 

  • Kastak D, Schusterman RJ (1996) Temporary threshold shift in a harbor seal (Phoca vitulina). J Acoust Soc Am 100(3):1905–1908

    Article  CAS  PubMed  Google Scholar 

  • Kastak D, Schusterman RJ, Southall BL, Reichmuth CJ (1999) Underwater temporary threshold shift induced by octave-band noise in three species of pinniped. J Acoust Soc Am 106(2):1142–1148

    Article  CAS  PubMed  Google Scholar 

  • Kastak D, Southall BL, Schusterman RJ, Kastak CR (2005) Underwater temporary threshold shift in pinnipeds: effects of noise level and duration. J Acoust Soc Am 118(5):3154–3163

    Article  PubMed  Google Scholar 

  • Kastak D, Reichmuth C, Holt MM, Mulsow J, Southall BL, Schusterman RJ (2007) Onset, growth, and recovery of in-air temporary threshold shift in a California sea lion (Zalophus californianus). J Acoust Soc Am 122(5):2916–2924

    Article  PubMed  Google Scholar 

  • Kastak D, Mulsow J, Ghoul A, Reichmuth C (2008) Noise-induced permanent threshold shift in a harbor seal. Acoustics 2008

    Google Scholar 

  • Kastelein R, Gransier R, van Mierlo R, Hoek L, de Jong C (2011) Temporary hearing threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) and harbor seals (Phoca vitulina) exposed to white noise in a 1/1 octave band around 4 kHz. J Acoust Soc Am 129:2432 (A)

    Google Scholar 

  • Keeler JS (1968) Compatible exposure and recovery functions for temporary threshold shift-mechanical and electrical models. J Sound Vib 2:220–235

    Article  Google Scholar 

  • Ketten DR (2000) Cetacean ears. In: Au W, Popper AN, Fay RR (eds) Hearing by whales and dolphins. Springer handbook of auditory research, 1st edn. Springer, New York, pp 43–108

    Google Scholar 

  • Kryter KD (1973) Impairment to hearing from exposure to noise. J Acoust Soc Am 53(5):1211–1234

    Article  CAS  PubMed  Google Scholar 

  • Kryter KD, Ward WD, Miller JD, Eldredge DH (1966) Hazardous exposure to intermittent and steady-state noise. J Acoust Soc Am 39(3):451–464

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lammers MO, Au WWL (2003) Directionality in the whistles of Hawaiian spinner dolphins (Stenella longirostris): a signal feature to cue direction of movement? Mar Mammal Sci 19(2):249–264

    Article  Google Scholar 

  • Lemonds DW (1999) Auditory filter shapes in an Atlantic bottlenose dolphin (Tursiops truncatus). University of Hawaii

    Google Scholar 

  • Lemonds DW, Kloepper LN, Nachtigall PE, Au WWL, Vlachos SA, Branstetter BK (2011) A re-evaluation of auditory filter shape in delphinid odontocetes: evidence of constant-bandwidth filters. J Acoust Soc Am 130(5):3107–3114

    Article  CAS  PubMed  Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psyhcoacoustics. J Acoust Soc Am 49:467–477

    Article  PubMed  Google Scholar 

  • Lucke K, Siebert U, Lepper PA, Blanchet M-A (2009) Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. J Acoust Soc Am 125(6):4060–4070

    Article  PubMed  Google Scholar 

  • Maslen KR (1981) Towards a better understanding of temporary threshold shift of hearing. Appl Acoust 14:281–318

    Article  Google Scholar 

  • McCormick JG, Wever EG, Palin J, Ridgway SH (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48(6):1418–1428

    Article  PubMed  Google Scholar 

  • McDonald MA, Hildebrand JA, Mesnick S (2009) Worldwide decline in tonal frequencies of blue whale songs. Endanger Species Res 9:13–21

    Article  Google Scholar 

  • McFadden D (1986) The curious half-octave shift: evidence for a basalward migration of the traveling-wave envelope with increasing intensity. In: Salvi RJ, Henderson D, Hamernik RP, Coletti V (eds) Basic and applied aspects of noise-induced hearing loss, vol 111. Proceedings of a NATO advanced studies institute on applied and basic aspects of noise-induced hearing loss, held September 23–29, 1985, in Lucca. NATO ASI Series A, Life Sciences edn. Plenum, New York, pp 295–312

    Google Scholar 

  • McFadden D (1988) Comodulation masking release: effects of varying the level, duration, and time delay of the cue band. J Acoust Soc Am 80:1658–1672

    Article  Google Scholar 

  • McFadden D, Plattsmier HS (1983) Frequency patterns of TTS for different exposure intensities. J Acoust Soc Am 74(4):1178–1184

    Article  CAS  PubMed  Google Scholar 

  • Melnick W (1991) Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 90(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Miller JD (1974) Effects of noise on people. J Acoust Soc Am 56(3):729–764

    Article  CAS  PubMed  Google Scholar 

  • Miller PJO (2002) Mixed-directionality of killer whale stereotyped calls: a direction of movement cue? Behav Ecol Sociobiol 52:262–270

    Article  Google Scholar 

  • Miller PJO, Biassoni N, Samuels A, Tyack PL (2000) Whale songs lengthen in response to sonar. Nature 405(6789):903

    Article  CAS  PubMed  Google Scholar 

  • Mills JH (1976) Threshold shifts produced by a 90-day exposure to noise. In: Henderson D, Hamernik RP, Dosanjh DS, Mills JH (eds) Effects of noise on hearing. Raven Press, New York, pp 265–275

    Google Scholar 

  • Mills JH, Gilbert RM, Adkins WY (1979) Temporary threshold shifts in humans exposed to octave bands of noise for 16 to 24 hours. J Acoust Soc Am 65(5):1238–1248

    Article  CAS  PubMed  Google Scholar 

  • Mooney TA, Nachtigall PE, Breese M, Vlachos S, Au WWL (2009a) Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus): the effects of noise level and duration. J Acoust Soc Am 125(3):1816–1826

    Article  PubMed  Google Scholar 

  • Mooney TA, Nachtigall PE, Vlachos S (2009b) Sonar-induced temporary hearing loss in dolphins. Biol Lett 5(4):565–567

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore BC (1996) Perceptual consequences of cochlear hearing loss and their implications for the design of hearing aids. Ear Hear 17(2):133–161

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ (1998) Cochlear hearing loss. Whurr Publishers Ltd, London

    Google Scholar 

  • Moore BCJ, Glasberg BR (2003) Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane at 1 and 2 kHz. Hear Res 175:66–74

    Article  PubMed  Google Scholar 

  • Moore BCJ, Wojtczak M, Vickers DA (1996) Effect of loudness recruitment on the perception of amplitude modulation. J Acoust Soc Am 100(1):481–489

    Article  Google Scholar 

  • Mulsow J, Reichmuth C (2007) Electrophysiological assessment of temporal resolution in pinnipeds. Aquat Mammals 33(1):122–131

    Article  Google Scholar 

  • Mulsow JL, Reichmuth C (2010) Psychophysical and electrophysiological aerial audiograms of a Steller sea lion (Eumetopias jubatus). J Acoust Soc Am 127(4):2692–2701

    Article  PubMed  Google Scholar 

  • Mulsow J, Reichmuth C, Gulland FMD, Rosen DAS, Finneran JJ (2011a) Aerial audiograms of several California sea lions (Zalophus californianus) and Steller sea lions (Eumetopias jubatus) measured using single and multiple simultaneous auditory steady-state response methods. J Exp Biol 214:1138–1147

    Article  PubMed  Google Scholar 

  • Mulsow JL, Finneran JJ, Houser DS (2011b) California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods. J Acoust Soc Am 129(4):2298–2306

    Article  PubMed  Google Scholar 

  • Nachtigall PE, Pawloski J, Au WWL (2003) Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus). J Acoust Soc Am 113(6):3425–3429

    Article  PubMed  Google Scholar 

  • Nachtigall PE, Supin AY, Pawloski J, Au WWL (2004) Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials. Mar Mammal Sci 20(4):673–687

    Article  Google Scholar 

  • Nachtigall PE, Yuen MML, Mooney TA, Taylor KA (2005) Hearing measurements from a stranded infant Risso’s dolphin, Grampus griseus. J Exp Biol 208:4181–4188

    Article  PubMed  Google Scholar 

  • Nachtigall PE, Mooney TA, Taylor KA, Miller LA, Rasmussen MH, Akamatsu T, Teilmann J, Linnenschmidt M, Vikingsson GA (2008) Shipboard measurements of the hearing of the white-beaked dolphin Lagenorhynchus albirostris. J Exp Biol 211:642–647

    Article  CAS  PubMed  Google Scholar 

  • Navy US (2008) Southern California Range Complex: Final Environmental Impact Statement/Overseas Environmental Impact Statement. Department of the Navy, Washington, DC

    Google Scholar 

  • Nelken I, Jacobson G, Ahdut L, Ulanovsky N (eds) (2001) Neural correlates of co-modulation masking release in auditory cortex of cats. Physiological and psychophysical basis of auditory function. Shaker Publishing

    Google Scholar 

  • Nixon JC, Glorig A (1961) Noise-induced permanent threshold shift at 2000 cps and 4000 cps. J Acoust Soc Am 33(7):904–908

    Article  Google Scholar 

  • Nummela S (2008a) Hearing. In: Perrin WF, Wursig B, Thewissen JGM (eds) Encyclopedia of marine mammals, 2nd edn. Academic Press, Burlington, pp 553–561

    Google Scholar 

  • Nummela S (2008b) Hearing in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold. University of California Press, Berkeley, pp 211–224

    Google Scholar 

  • Parks SE, Johnson M, Nowacek D, Tyack PL (2011) Individual right whales call louder in increased environmental noise. Biol Lett 7:33–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59(3):640–654

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of frequency resolution. In: Moore BCJ (ed) Frequency selectivity in hearing. Academic, London, pp 123–127

    Google Scholar 

  • Patuzzi R (1998) Exponential onset and recovery of temporary threshold shift after loud sound: evidence for long-term inactivation of mechano-electrical transduction channels. Hear Res 125:17–38

    Article  CAS  PubMed  Google Scholar 

  • Popov VV, Supin AY, Klishin VO (1996) Frequency tuning curves of the dolphin’s hearing: envelope-following response study. J Comp Physiol A 178(4):571–578

    CAS  PubMed  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wank K, Xiao J, Li S (2005) Evoked-potential audiogram of the Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis (L). J Acoust Soc Am 117(5):2728–2731

    Article  PubMed  Google Scholar 

  • Popov V, Supin A, Wang D, Wang K (2006) Nonconstant quality of auditory filters in the porpoises, Phocoena phocoena and Neophocaena phocaenoides (Cetacea, Phocoenidae). J Acoust Soc Am 119(5):3173–3180

    Article  PubMed  Google Scholar 

  • Popov VV, Supin AY, Klishin VO, Tarakanov MB, Pletenko MG (2008) Evidence for double acoustic windows in the dolphin Tursiops truncatus. J Acoust Soc Am 123(1):552–560

    Article  PubMed  Google Scholar 

  • Popov VV, Supin AY, Wang D, Wang K, Dong L, Wang S (2011) Noise-induced temporary threshold shift and recovery in Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis. J Acoust Soc Am 130(1):574–584

    Article  PubMed  Google Scholar 

  • Pressnitzer D, Meddis R, Winter IM (2001) Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. J Neurosci 21(16):6377–6386

    CAS  PubMed  Google Scholar 

  • Quaranta A, Portalatini P, Henderson D (1998) Temporary and permanent threshold shift: an overview. Scand Audiol 48:75–86

    CAS  Google Scholar 

  • Ridgway SH (1999) The cetacean central nervous system. In: Adelman G, Smith BH (eds) Elsevier’s Encyclopedia of Neuroscience, pp 352–357

    Google Scholar 

  • Ridgway SH, Carder DA, Smith RR, Kamolnick T, Schlundt CE, Elsberry WR (1997) Behavioral responses and temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, to 1-second tones of 141–201 dB re 1 μPa. Naval Command, Control, and Ocean Surveillance Center, RDT&E Division, San Diego

    Google Scholar 

  • Roitblat HL, Moore PWB, Helweg DA, Nachtigall PE (1993) Representation and processing of acoustic information in a biomimetic neural network. In: Meyer J-A, Roitblat HL, Wilson SW (eds) Animals to animats 2: stimulation of adaptive behavior. MIT press, pp 1–10

    Google Scholar 

  • Schlundt CE, Finneran JJ, Carder DA, Ridgway SH (2000) Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones. J Acoust Soc Am 107(6):3496–3508

    Article  CAS  PubMed  Google Scholar 

  • Schlundt CE, Dear RL, Green L, Houser DS, Finneran JJ (2007) Simultaneously measured behavioral and electrophysiological hearing thresholds in a bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 122(1):615–622

    Article  PubMed  Google Scholar 

  • Schlundt CE, Finneran JJ, Branstetter BK, Dear RL, Houser DS, Hernandez E (2008) Evoked potential and behavioral hearing thresholds in nine bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 123:3506(A)

    Google Scholar 

  • Schlundt CE, Dear RL, Houser DS, Bowles AE, Reidarson T, Finneran JJ (2011) Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus). J Acoust Soc Am 129(2):1111–1116

    Article  PubMed  Google Scholar 

  • Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR Jr, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mammals 33(4):411–521

    Article  Google Scholar 

  • Supin AY, Popov VV (1986) Tonal hearing-masking curves in bottlenosed dolphins. Doklady Akademii Nauk SSSR 289:242–246

    PubMed  Google Scholar 

  • Supin AY, Popov VV (1995) Envelope-following response and modulation transfer function in the dolphin’s auditory system. Hear Res 92:38–46

    Article  CAS  PubMed  Google Scholar 

  • Trickey JS, Branstetter BB, Finneran JJ (2011) Auditory masking with environmental, comodulated, and Gaussian noise in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 128(6):3799–3804

    Article  Google Scholar 

  • Ward WD (1962) Damage-risk criteria for line spectra. J Acoust Soc Am 34(10):1610–1619

    Article  Google Scholar 

  • Ward WD (1997) Effects of high-intensity sound. In: Crocker MJ (ed) Encyclopedia of acoustics. Wiley, New York, pp 1497–1507

    Chapter  Google Scholar 

  • Ward WD, Cushing EM, Burns EM (1976) Effective quiet and moderate TTS: implications for noise exposure standards. J Acoust Soc Am 59(1):160–165

    Article  CAS  PubMed  Google Scholar 

  • Yuen MML, Nachtigall PE, Breese M, Supin AY (2005) Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 118(4):2688–2695

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The preparation of this paper was supported by the International Association of Oil and Gas Producers Joint Industry Programme (JIP) on Exploration & Production Sound and Marine Life, the US Navy Chief of Naval Operations (N45) Living Marine Resources Program, and the US Office of Naval Research Marine Mammal S&T Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Finneran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Finneran, J.J., Branstetter, B.K. (2013). Effects of Noise on Sound Perception in Marine Mammals. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_10

Download citation

Publish with us

Policies and ethics