Skip to main content

Land Management Systems at the Interface Between Forestry and Agriculture

  • Chapter
  • First Online:
Forests and Rural Development

Part of the book series: Tropical Forestry ((TROPICAL,volume 9))

Abstract

Trees cultivated on agricultural land are playing an ever more significant role in rural development while at the same time also providing a range of ecosystem services such as soil protection, biodiversity conservation and greater carbon sequestration. All over the world, at the interface between forestry and agriculture, a wide variety of agroforestry systems are being implemented as a means to provide much needed wood of different dimensions and qualities, other non-timber forest products as well as animal and agricultural crop produce. An overview of some of the main agroforestry approaches making a contribution to rural development globally are presented, including innovative examples of modern agroforestry. Subsequently, another land use system flanking forestry and agriculture that has been growing in importance internationally in recent years is presented, namely short rotation coppice management. Distinct from traditional agroforestry systems in that in most cases wood is the only production goal, short rotation coppice plantations are a highly productive form of agricultural land use providing farmers with a great deal of flexibility, potentially high yields and certain ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell TM (2005) Forestry and biomass production – lessons from the temperate regions and the tropics. Paper presented to the international conference ‘issues for sustainable use of biomass resources for energy,’ Colombo

    Google Scholar 

  • Ajayi OC, Place F (2012) Policy support for large-scale adoption of agroforestry practices: experience from Africa and Asia. In: Nair PKR, Garrity DP (2012) (eds) Agroforestry – the future of global land use, vol 9, Adv in Agrofor. Springer, Dordrecht/Heidelberg/New York/London, pp 175–201

    Google Scholar 

  • Aronsson P, Perttu K (2001) Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. Forest Chron 77(2):293–299

    Article  Google Scholar 

  • Avohou TH, Houehounha R, Glele-Kakai R, Assogbadjo AE, Sinsin B (2011) Firewood yield and profitability of a traditional Daniellia oliveri short-rotation coppice on fallow lands in Benin. Biomass Bioenerg 35:562–571

    Article  Google Scholar 

  • Bellefontaine R, Petit S, Pain-Orcet M, Deleporte P, Bertault J-G (2002) Trees outside forests. Towards a better awareness. FAO Conservation Guide 35, Rome http://www.fao.org/docrep/005/y2328e/y2328e00.htm. Accessed 9 Jan 2013

  • Bemmann A, Große W (2011) Effiziente Landnutzung – ein Beitrag zur Zukunftssicherung. Vision der Professur für Forst- und Holzwirtschaft Osteuropas. In: Bonn S, Erler J, Herzog S (eds) Tharandt 2011 – 200 Jahre Ideen für die Zukunft. Forstwissenschaftliche Beiträge Tharandt/Contributions to For Science. Beiheft 12:16–37

    Google Scholar 

  • Bemmann A, Nahm M, Brodbeck F, Sauter UH (2010) Holz aus Kurzumtriebsplantagen: Hemmnisse und Chancen. Forstarchiv 81(6):246–254

    Google Scholar 

  • Bemmann A, Butler Manning D, Röhle H, Skibbe K (2011) Potenziale, Chancen und Hemmnisse einer Kurzumtriebswirtschaft. AFZ-Der Wald 11:10–12

    Google Scholar 

  • Bender B, Chalmin A, Reeg T, Konold W, Mastel K, Spiecker H (2009) Moderne Agroforstsysteme mit Werthölzern. Leitfaden für die Praxis. BMBF und Forschungszentrum Jülich, meisterdruck, Reute

    Google Scholar 

  • Berg Å (2002) Breeding birds in short-rotation coppices on farmland in central Sweden. The importance of salix height and adjacent habitats. Agr Ecosyst Environ 90:265–276

    Article  Google Scholar 

  • Bielefeldt J, Bolte A, Busch G, Dohrenbusch A, Kroiher F, Lamersdorf N, Schulz U, Stoll B (2008) Energieholzproduktion in der Landwirtschaft. Chancen und Risiken aus Sicht der Natur- und Umweltschutzes. Naturschutzbund Deutschland (NABU) e.V., Berlin, Warlich Druck Meckenheim GmbH, Meckenheim

    Google Scholar 

  • Blick T, Weiss I, Burger F (2003) Spinnentiere einer neu angelegten Pappel-Kurzumtriebsfläche (Energiewald) und eines Ackers bei Schwarzenau (Lkr. Kitzingen, Unterfranken, Bayern). Arachnologische Mitteilungen 25:1–16

    Article  Google Scholar 

  • Börjesson P (2006) Livscykelanalys av Salixproduktion. Lunds Tekniska Högskola, Institutionen för teknik och samhälle. Rapport nr 60

    Google Scholar 

  • Buchholz T, Volk T (2007) Designing short-rotation coppice based bioenergy systems for rural communities in east Africa. Final report: biosyrca project. USAID

    Google Scholar 

  • Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) (2007) Nutzung von Biomasse zur Energiegewinnung – Empfehlungen an die Politik. Studie des wissenschaftlichen Beirates Agrarpolitik des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz. Berlin

    Google Scholar 

  • Burger F (2006) Zur Ökologie von Energiewäldern. In: DRL (Deutscher Rat für Landespflege) Die Auswirkungen erneuerbarer Energien auf Natur und Landschaft. Schriftenreihe des Deutschen Rates für Landespflege 79:74–80

    Google Scholar 

  • Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenerg 35:4165–4173

    Article  CAS  Google Scholar 

  • Cossalter C, Pye-Smith C (2003) Fast-wood forestry: myths and realities. Centre for International Forestry Research, Jakarta

    Google Scholar 

  • Dalianis C, Djouras N, Sooter C (1996) Very short rotation and dense eucalypt plantations for energy. In: Chartier P, Ferrero GL, Henius UM, Hultenberg S, Sachau J, Wiinblad M (eds) Biomass for energy and environment. Proceedings of the 9th European bioenergy conference, Copenhagen, Pergamon, pp 725–732, 24–27 June 1996

    Google Scholar 

  • Dimitriou I, Aronsson P (2005) Willows for energy and phytoremediation in Sweden. Unasylva 221(56):47–50

    Google Scholar 

  • Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ü, Monti A, Njakou Djomo S, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2011) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenerg 4(4):372–391

    Article  Google Scholar 

  • Dupraz C, Liagre F (2008) Agroforesterie. Des arbres et des cultures. Editions France Agricole, Paris

    Google Scholar 

  • Dupraz C, Burgess P, Gavaland A, Graves A, Herzog F, Incoll L, Jackson N, Keesman K, Lawson G, Lecomte I, Liagre F, Mantzanas K, Mayus M, Moreno G, Palma J, Papanastasis V, Paris P, Pilbeam D, Reisner Y, Vincent G, van der Werf W (2005) Synthesis of the ‘silvoarable agroforestry for Europe’ project. INRA-UMR System Editions, Montpellier

    Google Scholar 

  • Elliot C (2003) WWF vision for planted forests. Report for the UNFF Intersessional Experts’ meeting on the role of planted forests in sustainable forest management, Wellington, 24–30th Mar 2003

    Google Scholar 

  • Fang S, Li G, Fu X (2004) Biomass production and bark yield in the plantations of Pteroceltis tatarinowii. Biomass Bioenerg 26:319–328

    Article  Google Scholar 

  • Fang S, Liu Z, Cao Y, Liu D, Yu M, Tang L (2011) Sprout development, biomass accumulation and fuelwood characteristics from coppiced plantations of Quercus acutissima. Biomass Bioenerg 35:3104–3114

    Article  Google Scholar 

  • FAO (2010) What woodfuels can do to mitigate climate change, FAO forestry paper 162. Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • FAO (2012) Climate smart agriculture for development. Food and agriculture organisation of the United Nations. http://www.fao.org/climatechange/climatesmart/en/. Accessed 9 Jan 2013

  • Friedman F, Shames S (2012) Making money from soil carbon in western Kenya. New agriculturist, http://www.new-ag.info/en/focus/focusItem.php?a=2611 . Accessed 9 Jan 2013

  • Garrity DP (2004a) Agroforestry and the achievement of the millennium development goals. Agroforest Syst 61:5–17

    Google Scholar 

  • Garrity DP (2004b) Agroforestry and the future of global land use. In: Nair PKR, Garrity DP (2012) (eds) Agroforestry – the future of global land use, vol 9, Adv in Agrofor. Springer, Dordrecht/Heidelberg/New York/London, pp 21–7

    Google Scholar 

  • Geyer WA (2006) Biomass production in the Central Great Plains USA under various coppice regimes. Biomass Bioenerg 30:778–783

    Article  Google Scholar 

  • Glaser T, Schmidt PA (2010) Auswirkungen von Kurzumtriebsplantagen auf die Phytodiversität. In: Bemmann A, Knust C (eds) Agrowood – Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 153–160

    Google Scholar 

  • Gordon AM, Newman S (eds) (1997) Temperate agroforestry systems. CAB Internat, Wallingford

    Google Scholar 

  • Grünewald H (2005) Anbau schnellwachsender Gehölze für die energetische Verwertung in einem Alley-Cropping-System auf Kippsubstraten des Lausitzer Braunkohlereviers. Cottbuser Schriften zu Bodenschutz und Rekultivierung, Band 28

    Google Scholar 

  • GTZ (1998) Upper Mahaweli Watershed Management Project: second progress review. Kandy, Sri Lanka, Mahaweli Authority of Sri Lanka/GTZ, Eschborn

    Google Scholar 

  • Guo LB, Sims REH, Horne DJ (2002) Biomass production and nutrient cycling in eucalyptus short rotation forests in New Zealand. I: biomass and nutrient accumulation. Bioresour Technol 85:273–283

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson L (1987) Plant conservation aspects of energy forestry – a new type of land use in Sweden. Forest Ecol Manag 21:141–161

    Article  Google Scholar 

  • Guuroh RT, Uibrig H, Acheampong E (2012) Homegardens as a source of income for rural households – a case study of Bieha district, southern Burkina Faso. J Agr Sci Technol B2:798–813, http://uni-bonn.academia.edu/ReginaldTangGuuroh/Papers . Accessed 9 Jan 2013

  • Holmgren P, Masakha EJ, Sjoholm H (1994) Not all African land is being degraded: a recent survey of trees on farms in Kenya reveals rapidly increasing forest resources. Ambio 23:390–395

    Google Scholar 

  • Huxley PA (1999) Tropical agroforestry. Blackwell Science, Oxford

    Google Scholar 

  • Ireland D, Hall A, Jones DH (2004) Woodfuel information pack. Forest Research, Surrey

    Google Scholar 

  • Ireland D, Claridge J, Pow R (2006) The quest for sustainable energy: woodfuel meets the challenge. Forest Research, Surrey

    Google Scholar 

  • Kahle P, Baum C, Boelcke B (2005) Effect of afforestation on soil properties and mycorrhizal formation. Pedosphere 15:754–760

    CAS  Google Scholar 

  • Kapp G (1996) Development-oriented research: peasant rainforest management in the lowland tropics of Central America. Plant Res Dev 43:16–30

    Google Scholar 

  • Kapp G (1998) Bäuerliche Forst- und Agroforstwirtschaft in Zentralamerika. Untersuchungen über forstliche und agroforstliche Produktionssysteme unter besonderer Berücksichtigung des feuchten Tieflands von Costa Rica und Panama. Margraf Verlag, Weikersheim

    Google Scholar 

  • Kapp G (2009) Waldbauliches Potentiale von Hybridnüssen für Forstinvestitionen. Internal study. GFA ENVEST, Hamburg

    Google Scholar 

  • Kapp G (2010) Interim evaluation report: improvement of food security and people’s livelihood on sloping lands in DPR Korea. Deutsche Welthungerhilfe e.V, Bonn

    Google Scholar 

  • Kapp GB, Kremkau K, Dixon F (1991) Manejo sostenido de bosquetes en fincas privadas de los trópicos húmedos. Un estudio efectuado en la zonas de Changuinola (Panamá) y Talamanca (Costa Rica). CATIE, Turrialba, C.R, El Chasqui No. 26:5–25.

    Google Scholar 

  • Klang-Westin E, Eriksson J (2003) Potential of salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249(1):127–137

    Article  CAS  Google Scholar 

  • Kroiher F, Bielefeldt J, Bolte A, Schulter M (2008) Die Phytodiversität in Energieholzbeständen. Archiv Forstwesen Landschaftsökologie 42(4):158–165

    Google Scholar 

  • Kumar BM, Singh AK, Dhyani SK (2012) South Asian agroforestry: traditions, transformations, and prospects. In: Nair PKR, Garrity DP (2012) (eds) Agroforestry – the future of global land use, vol 9, Adv in Agrofor. Springer, Dordrecht/Heidelberg/New York/London, pp 359–89

    Google Scholar 

  • Lamersdorf N, Petzold R, Schwärzel K, Feger K-H, Köstner B, Moderow U, Bernhofer C, Knust C (2010) Bodenökologische Aspekte von Kurzumtriebsplantagen. In: Bemmann A, Knust C (eds) Agrowood – Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 170–188

    Google Scholar 

  • Liebhard P (2007) Energieholz im Kurzumtrieb – Rohstoff der Zukunft. Leopold Stocker Verlag, Graz/Stuttgart

    Google Scholar 

  • Liniger H, Studer RM, Hauert C, Gurtner M (2011) Sustainable land management in practice. Guidelines and best practices for Sub-Saharan Africa. WOCAT, TerrAfrica-NEPAD, FAO, Rome, http://www.wocat.net/fileadmin/user_upload/documents/Books/SLM_in_Practice_E_Final_low.pdf. Accessed 9 Jan 2013

  • Makeschin F (1994) Effects of energy forestry on soils. Biomass Bioenerg 6:63–79

    Article  CAS  Google Scholar 

  • Matthews R, Robertson K (2001) Answers to ten frequently asked questions about bioenergy, carbon sinks and their role in climate change. IEA Bioenergy Task 38, Joanneum Research, Austria

    Google Scholar 

  • Mettendorf B (2008) Erfahrungen im Anbau mit Hybridnüssen. In: Mauer WD, Haase B (eds) Die Walnuss (Juglans regia L.). Mitteilungen aus der Forschungsanstalt für Waldökologie und Forstwirtschaft Rheinland-Pfalz Nr. 66/08, Trippstadt, 61–72

    Google Scholar 

  • Minang PA, van Noordwijk M, Swallow BM (2012) High-carbon-stock rural development pathways in Asia and Africa: improved land management for climate change mitigation. In: Nair PKR, Garrity DP (2012) (eds) Agroforestry – the future of global land use, vol 9, Adv in Agrofor. Springer, Dordrecht/Heidelberg/New York/London, pp 127–44

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers in cooperation with International Centre for Research in Agroforestry, Dordrecht

    Book  Google Scholar 

  • Nair PKR, Garrity D (eds) (2012) Agroforestry – the future of global land use, vol 9, Adv in Agrofor. Springer, Dordrecht/Heidelberg/New York/London

    Google Scholar 

  • Noh NJ, Son Y, Kim RH, Seo KW, Koo JW, Park IH, Lee YJ, Lee KH, Son YM (2007) Biomass accumulations and the distribution of nitrogen and phosphorus within three quercus acutissima stands in central Korea. J Plant Biol 50(4):461–466

    Article  CAS  Google Scholar 

  • Pachauri RK (2012) Climate change and agroforestry. In: Nair PKR, Garrity D (2012) (eds) Agroforestry – the future of global land use, vol 9, Adv in Agrofor. Springer, Dordrecht/Heidelberg/New York/London, pp 13–15

    Google Scholar 

  • Patterson W, Booth R, Elliot P (1994) Power from plants – the global implications of new technologies for electricity from biomass. Royal Institute of International Affairs, London

    Google Scholar 

  • Pereira JS, Pereira H (eds) (1994) Eucalyptus for biomass production. Commission of the European Communities. Brussels. Instituto Superior de Agronomia, Lisbon

    Google Scholar 

  • Plonczak M (1989) Struktur und Entwicklungsdynamik eines Naturwaldes unter Konzessionsbewirtschaftung in den westlichen Llanos Venezuelas. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen, Heft 43. Göttingen

    Google Scholar 

  • Rédei K (ed) (2003) Black locust (Robinia pseudoacacia L.) growing in Hungary, 2nd edn. Publications of the Hungarian Forest Research Institute, Budapest, 19

    Google Scholar 

  • Reeg T, Bemmann A, Konold W, Murach D, Spiecker H (eds) (2009) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Reif A, Schmutz T (2001) Planting and maintaining hedges in Europe. Institut pour le développement forestier, Paris

    Google Scholar 

  • Rockwood DL, Carter DR, Langholtz MH, Stricker JA (2006) Eucalyptus and populus short rotation woody crops for phosphate mined lands in Florida, USA. Biomass Bioenerg 30(8–9):728–734

    Article  Google Scholar 

  • Rode M (2005) Energetische Nutzung von Biomasse und der Naturschutz. Nat Landsch 80:403–412

    Google Scholar 

  • Rowe R, Hanley M, Goulson D, Clarke D (2010) Potential benefits of commercial willow short rotation coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenerg 35(1):325–336

    Article  Google Scholar 

  • Schildbach M, Grünewald H, Wolf H, Schneider B-U (2009) Begründung von Kurzumtriebsplantagen: Baumartenwahl und Anlageverfahren. In: Reeg T, Bemmann A, Konold W, Murach D, Spiecker H (eds) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH Verlag, Weinheim, pp 57–71

    Chapter  Google Scholar 

  • Schmidt PA, Gerold D (2010) Nachhaltig bewirtschaftete Wälder versus Kurzumtriebsplantagen versus Agroforstsysteme. In: Bemmann A, Knust C (eds) Agrowood – Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 208–216

    Google Scholar 

  • Seebauer M (2008) Silvicultural study on Markhamia Lutea with regard to short rotation energy plantations. EU Re-Impact Project. Unique Forestry Consultants Ltd, Freiburg

    Google Scholar 

  • Shackleton CM (2001) Managing regrowth of an indigenous savanna tree species (Terminalia sericea) for fuelwood: the influence of stump dimensions and post-harvest coppice pruning. Biomass Bioenerg 20:261–270

    Article  Google Scholar 

  • Sims REH, Maiava TG, Bullock BT (2001) Short rotation coppice tree species selection for woody biomass production in New Zealand. Biomass Bioenerg 20:329–335

    Article  Google Scholar 

  • Skärbäck E, Becht P (2005) Landscape perspective on energy forests. Biomass Bioenerg 28:151–159

    Article  Google Scholar 

  • Skodawessely C, Pretzsch J (2009) Akzeptanz des Energieholzanbaus bei Landwirten. In: Reeg T, Bemmann A, Konold W, Murach D, Spiecker H (eds) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 217–226

    Chapter  Google Scholar 

  • Sociedad Agrícola Golondrina SA, UNIQUE WOOD Paraguay SA, UNIQUE WOOD Alemania GbR (2004) Plan estratégico y operativo de Forestaría Certificada en el Paraguay (FORCERPA). Caazapa/Freiburg (unpublished report)

    Google Scholar 

  • Styles D, Jones MB (2007) Energy crops in Ireland: an assessment of their potential contribution to sustainable agriculture, electricity and heat production. Final report of the environmental RTDI programme 2000–2006. Environmental Protection Agency. Wexford

    Google Scholar 

  • The World Agroforestry Centre ICRAF (2011) Trees in climate-smart agricultural systems. A submission to the UNFCCC subsidiary body for scientific and technological advice on issues related to agriculture. ICRAF, Nairobi http://www.unfccc.int/resource/docs/2012/smsn/igo/72.pdf . Accessed 9 Jan 2013

  • The World Bank (2011) Climate smart agriculture – a triple win. http://www.youtube.com/watch?v=i0V2xzEw44Y&feature=relmfu . Accessed 9 Jan 2013

  • The World Bank Institute, TerrAfrica (2012) Conservation agriculture: how has Zambia scaled it up? http://www.youtube.com/watch?v=qRh6FCvx91g&list=UUoeN5nAIVN_qd_rp0I_jJWA &index=1&feature=plcp . Accessed 9 Jan 2013

  • Verwijst T (2003) Short rotation crops in the world. Report of IEA-Bioenergy Task 30: Short rotation crops

    Google Scholar 

  • Weih M (2009) Willow short rotation coppice commercially grown on agricultural land in Sweden – possibilities for improvement of biodiversity and landscape design. IEA Bioenergy Task 30 – short rotation crops for bioenergy systems. Technical review no. 4

    Google Scholar 

  • Weih M, Karacic A, Munkert H, Verwijst T, Diekmann M (2003) Influence of young poplar stands on floristic diversity in agricultural landscapes (Sweden). Basic Appl Ecol 4:149–156

    Article  Google Scholar 

  • Woelcke J, Tennigkeit T (2009) Harvesting agricultural carbon in Kenya. Rural 21 – 01/2009: 21:29–31

    Google Scholar 

  • Wright L (2006) Worldwide commercial development of bioenergy with a focus on energy-crop based projects. Biomass Bioenerg 30:706–714

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Kapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kapp, G., Manning, D.B. (2014). Land Management Systems at the Interface Between Forestry and Agriculture. In: Pretzsch, J., Darr, D., Uibrig, H., Auch, E. (eds) Forests and Rural Development. Tropical Forestry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41404-6_4

Download citation

Publish with us

Policies and ethics