Skip to main content

On the Importance of Nonlinear Modeling in Computer Performance Prediction

  • Conference paper
Advances in Intelligent Data Analysis XII (IDA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8207))

Included in the following conference series:

Abstract

Computers are nonlinear dynamical systems that exhibit complex and sometimes even chaotic behavior. The low-level performance models used in the computer systems community, however, are linear. This paper is an exploration of that disconnect: when linear models are adequate for predicting computer performance and when they are not. Specifically, we build linear and nonlinear models of the processor load of an Intel i7-based computer as it executes a range of different programs. We then use those models to predict the processor loads forward in time and compare those forecasts to the true continuations of the time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, Z., Bradley, E., Garland, J., Meiss, J.: Iterated function system models in data analysis: Detection and separation. CHAOS 22(2) (April 2012)

    Google Scholar 

  2. Alexander, Z., Mytkowicz, T., Diwan, A., Bradley, E.: Measurement and dynamical analysis of computer performance data. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds.) IDA 2010. LNCS, vol. 6065, pp. 18–29. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bass, T.: The Eudaemonic Pie. Penguin, New York (1992)

    Google Scholar 

  4. Browne, S., Deane, C., Ho, G., Mucci, P.: PAPI: A portable interface to hardware performance counters. In: Proceedings of Department of the Defense HPCMP Users Group Conference (1999)

    Google Scholar 

  5. Casdagli, M., Eubank, S. (eds.): Nonlinear Modeling and Forecasting. Addison Wesley (1992)

    Google Scholar 

  6. Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M.F.P., Temam, O.: Rapidly selecting good compiler optimizations using performance counters. In: Proceedings of the International Symposium on Code Generation and Optimization (2007)

    Google Scholar 

  7. Desikan, R., Burger, D., Keckler, S.W.: Measuring experimental error in microprocessor simulation. In: Proceedings of the International Symposium on Computer Architecture (2001)

    Google Scholar 

  8. Faraway, J.J.: Practical regression and ANOVA in R (2002), http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

  9. Fraser, A., Swinney, H.: Independent coordinates for strange attractors from mutual information. Physical Review A 33(2), 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garland, J., Bradley, E.: Predicting computer performance dynamics. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 173–184. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Grassberger, P., Hegger, R., Kantz, H., Schaffrath, C., Schreiber, T.: On noise reduction methods for chaotic data. Chaos 3, 127 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grechanik, M., Fu, C., Xie, Q.: Automatically finding performance problems with feedback-directed learning software testing. In: Proceedings of the International Conference on Software Engineering (2012)

    Google Scholar 

  13. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, 2nd edn. John Wiley & Sons (1991)

    Google Scholar 

  14. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press (1997)

    Google Scholar 

  15. Kennel, M., Isabelle, S.: Method to distinguish possible chaos from colored noise and to determine embedding parameters. Phys. Rev. A 46, 3111 (1992)

    Article  Google Scholar 

  16. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining minimum embedding dimension using a geometrical construction. Physical Review A 45, 3403–3411 (1992)

    Article  Google Scholar 

  17. Liu, J., Wu, S., Zidek, J.: On segmented multivariate regression. Statistica Sinica 7, 497–525 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Lorenz, E.N.: Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric Sciences 26, 636–646 (1969)

    Article  Google Scholar 

  19. Makhoul, J.: Linear prediction: A tutorial review. Proceedings of the IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  20. Martinez, J.F., Ipek, E.: Dynamic multicore resource management: A machine learning approach. IEEE Micro 29(5), 8–17 (2009)

    Article  MATH  Google Scholar 

  21. McGee, V.E., Carleton, W.T.: Piecewise regression. Journal of the American Statistical Association 65(331), 1109–1124 (1970)

    Article  Google Scholar 

  22. Moseley, T., Kihm, J.L., Connors, D.A., Grunwald, D.: Methods for modeling resource contention on simultaneous multithreading processors. In: Proceedings of the International Conference on Computer Design (2005)

    Google Scholar 

  23. Myktowicz, T., Diwan, A., Bradley, E.: Computers are dynamical systems. Chaos 19, 033124 (2009), doi:10.1063/1.3187791

    Google Scholar 

  24. Mytkowicz, T.: Supporting experiments in computer systems research. Ph.D. thesis, University of Colorado (November 2010)

    Google Scholar 

  25. Packard, N., Crutchfield, J., Farmer, J., Shaw, R.: Geometry from a time series. Physical Review Letters 45, 712 (1980)

    Article  Google Scholar 

  26. Sauer, T., Yorke, J., Casdagli, M.: Embedology. Journal of Statistical Physics 65, 579–616 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Takens, F.: Detecting strange attractors in fluid turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, Springer, Berlin (1981)

    Google Scholar 

  28. Weigend, A., Gershenfeld, N. (eds.): Time Series Prediction: Forecasting the Future and Understanding the Past. Santa Fe Institute (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garland, J., Bradley, E. (2013). On the Importance of Nonlinear Modeling in Computer Performance Prediction. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41398-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41397-1

  • Online ISBN: 978-3-642-41398-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics