Skip to main content

Stabilization of merocyanine by protonation, charge, and external electric fields and effects on the isomerization of spiropyran: a computational study

  • Regular Article
  • Chapter
  • First Online:
Theoretical Chemistry in Belgium

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 6))

  • 1116 Accesses

Abstract

Protonation, charging, and field effects on the thermal isomerization of a nitrospiropyran (SP) modified by a thiolated etheroxide chain into merocyanine (MC) are computationally studied at the DFT level. The ring opening leads to cis-MC conformers that then isomerize to the more stable trans forms. While the closed neutral spiropyran is more stable than the conjugated open forms, the merocyanine conformers are significantly stabilized by protonation, electron attachment, and ionization. For protonation on the pyran oxygen atom and electron attachment, the MC conformers are more stable than SP, and unlike for the neutral species, the ring opening is spontaneous at room temperature. Moreover, for the pyran oxygen-protonated form, the ring opening to the cis-merocyanine becomes barrierless. On the other hand, barriers comparable to the neutral remain along the thermal pathway to the cis-merocyanine conformer for ionization or electron attachment, and the barrier for isomerization is significantly higher for the N-protonated SP form. External field effects on the neutral reaction path show that ring opening to the cismerocyanine is favored when the field reduces the electron density on the pyran part, as also induced by the local field due to O protonation.

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium

Electronic supplementary material The online version of this article (doi:10.1007/s00214-012-1245-4) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenoble C, Becker RS (1986) Photophysics, photochemistry, kinetics, and mechanism of the photochromism of 6’-nitroindolinospiropyran. J Phys Chem 90:62–65

    Article  CAS  Google Scholar 

  2. Chibisov AK, Gorner H (1997) Photoprocesses in spiropyranderived merocyanines. J Phys Chem A 101:4305–4312

    Article  CAS  Google Scholar 

  3. Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104:2751–2776

    Article  CAS  Google Scholar 

  4. Minkin VI, Metelitsa AV, Dorogan IV, Lukyanov BS, Besugliy SO, Micheau J-C (2005) Spectroscopic and theoretical evidence for the elusive intermediate of the photoinitiated and thermal rearrangements of photochromic spiropyrans. J Phys Chem A 109:9605–9616

    Article  CAS  Google Scholar 

  5. Buntinx G, Poizat O, Foley S, Sliwa M, Aloise S, Lokshin V, Samat A (2010) Sub-picosecond transient absorption spectroscopy of substituted photochromic spironaphthoxazine compounds. Dyes Pigm 89:305–312

    Article  Google Scholar 

  6. Willner I (1997) Photoswitchable biomaterials: en route to optobioelectronic systems. Acc Chem Res 30:347–356

    Article  CAS  Google Scholar 

  7. Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741–1754

    Article  CAS  Google Scholar 

  8. Wen G, Yan J, Zhou Y, Zhang D, Mao L, Zhu D (2006) Photomodulation of the electrode potential of a photochromic spiropyran-modified Au electrode in the presence of Zn2+: a new molecular switch on the electronic transduction of the optical signals. Chem Commun 2006(28):3016–3018

    Article  Google Scholar 

  9. Fukushima K, Vandenbos AJ, Fujiwara T (2007) Spiropyran dimer toward photo-switchable molecular machine. Chem Mater 19:644–646

    Article  CAS  Google Scholar 

  10. Bardavid Y, Goykhman I, Nozaki D, Cuniberti G, Yitzchaik S (2011) Dipole assisted photogated switch in spiropyran grafted polyaniline nanowires. J Phys Chem C 115:3123–3128

    Article  CAS  Google Scholar 

  11. Raymo FM, Alvarado RJ, Giordani S, Cejas MA (2003) Memory effects based on intermolecular photoinduced proton transfer. J Am Chem Soc 125:2361–2364

    Article  CAS  Google Scholar 

  12. Tomizaki K-y, Mihara H (2007) Phosphate-mediated molecular memory driven by two different protein kinases as information input elements. J Am Chem Soc 129:8345–8352

    Article  Google Scholar 

  13. Riskin M, Gutkin V, Felner I, Willner I (2008) Photochemical and electrochemical encoding of erasable magnetic patterns. Angew Chem Int Ed 47:4416–4420

    Article  CAS  Google Scholar 

  14. Winkler JD, Bowen CM, Michelet V (1998) Photodynamic fluorescent metal ion sensors with parts per billion sensitivity. J Am Chem Soc 120:3237–3242

    Article  CAS  Google Scholar 

  15. Ren J, Tian H (2007) Thermally stable merocyanine form of photochromic spiropyran with aluminium ion as a reversible photo-driven sensors in aqueous solution. Sensors 7:3166–3178

    Article  CAS  Google Scholar 

  16. Scarmagnani S, Walsh Z, Slater C, Alhashimy N, Paull B, Macka M, Diamond D (2008) Polystyrene bead-based system for optical sensing using spiropyran photoswitches. J Mater Chem 18:5063– 5071

    Article  CAS  Google Scholar 

  17. Shiraishi Y, Adachi K, Itoh M, Hirai T (2009) Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor. Org Lett 11:3482–3485

    Article  CAS  Google Scholar 

  18. Zhu M-Q, Zhu L, Han JJ, Wu W, Hurst JK, Li ADQ (2006) Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J Am Chem Soc 128:4303– 4309

    Article  CAS  Google Scholar 

  19. Zhu L, Wu W, Zhu M-Q, Han JJ, Hurst JK, Li ADQ (2007) Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J Am Chem Soc 129:3524– 3526

    Article  CAS  Google Scholar 

  20. de Leon L, Biewer MC (2000) Preparation of self-assembled monolayers with specific intermolecular interactions. Tetrahedron Lett 41:3527–3530

    Article  Google Scholar 

  21. Wohl CJ, Kuciauskas D (2005) Excited-state dynamics of spiropyran- derived merocyanine isomers. J Phys Chem B 109: 22186–22191

    Article  CAS  Google Scholar 

  22. Holm A-K, Mohammed OF, Rini M, Mukhtar E, Nibbering ETJ, Fidder H (2005) Sequential merocyanine product isomerization following femtosecond UV excitation of a spiropyran. J Phys Chem A 109:8962–8968

    Article  CAS  Google Scholar 

  23. Poisson L, Raffael KD, Soep B, Mestdagh J-M, Buntinx G (2006) Gas-phase dynamics of spiropyran and spirooxazine molecules. J Am Chem Soc 128:3169–3178

    Article  CAS  Google Scholar 

  24. Stitzel S, Byrne R, Diamond D (2006) LED switching of spiropyran- doped polymer films. J Mater Sci 41:5841–5844

    Article  CAS  Google Scholar 

  25. Kalisky Y, Orlowski TE, Williams DJ (1983) Dynamics of the spiropyran-merocyanine conversion in solution. J Phys Chem 87:5333–5338

    Article  CAS  Google Scholar 

  26. Tamaki T, Sakuragi M, Ichimura K, Aoki K (1989) Laser photolysis studies of nitrospiropyrans intramolecularly linked with a triplet quenching or sensitizing side group. Chem Phys Lett 161:23–26

    Article  CAS  Google Scholar 

  27. Helmut G (1998) Photochemical ring opening in nitrospiropyrans: triplet pathway and the role of singlet molecular oxygen. Chem Phys Lett 282:381–390

    Article  Google Scholar 

  28. Emsting NP (1989) Transient optical absorption spectroscopy of the photochemical spiropyran-merocyanine conversion. Chem Phys Lett 159:526–531

    Article  Google Scholar 

  29. Zhang JZ, Schwartz BJ, King JC, Harris CB (1992) Ultrafast studies of photochromic spiropyrans in solution. J Am Chem Soc 114:10921–10927

    Article  CAS  Google Scholar 

  30. Chibisov AK, Gorner H (2001) Photochromism of spirobenzopyranindolines and spironaphthopyranindolines. Phys Chem Chem Phys 3:424–431

    Article  CAS  Google Scholar 

  31. Sheng Y, Leszczynski J, Garcia AA, Rosario R, Gust D, Springer J (2004) Comprehensive theoretical study of the conversion reactions of spiropyrans: substituent and solvent effects. J Phys Chem B 108:16233–16243

    Article  CAS  Google Scholar 

  32. Maurel F, Aubard J, Millie P, Dognon JP, Rajzmann M, Guglielmetti R, Samat A (2006) Quantum chemical study of the photocoloration reaction in the napthoxazine series. J Phys Chem A 110:4759–4771

    Article  CAS  Google Scholar 

  33. Wojtyk JTC, Wasey A, Xiao N-N, Kazmaier PM, Hoz S, Yu C, Lemieux RP, Buncel E (2007) Elucidating the mechanisms of acidochromic spiropyran-merocyanine interconversion. J Phys Chem A 111:2511–2516

    Article  CAS  Google Scholar 

  34. Hisayoshi S (1997) Molecular orbital calculations for acid induced ring opening reaction of spiropyran. Dyes Pigm 33:229–237

    Article  Google Scholar 

  35. Buback J, Kullmann M, Langhojer F, Nuernberger P, Schmidt R, Wurthner F, Brixner T (2010) Ultrafast bidirectional photoswitching of a spiropyran. J Am Chem Soc 132:16510–16519

    Article  CAS  Google Scholar 

  36. Krysanov SA, Alfimov MV (1984) Picosecond flash photolysis of photochromic spiropyrans. Laser Chem 4:129–138

    Article  CAS  Google Scholar 

  37. Cottone G, Noto R, La Manna G (2004) Theoretical study of spiropyran-merocyanine thermal isomerization. Chem Phys Lett 388:218–222

    Article  CAS  Google Scholar 

  38. Ernsting NP, Dick B, Arthen-Engeland Th (1990) The Primary photochemical reaction step of unsubstituted indolino-spiropyrans. Pure Appl Chem 62:1483–1488

    Article  CAS  Google Scholar 

  39. Ipe BI, Mahima S, Thomas KG (2003) Light-induced modulation of self-assembly on spiropyran-capped gold nanoparticles: a potential system for the controlled release of amino acid derivatives. J Am Chem Soc 125:7174–7175

    Article  CAS  Google Scholar 

  40. Riskin M, Willner I (2009) Coupled electrochemical/photochemical patterning and erasure of ag 0 nanoclusters on au surfaces. Langmuir 25:13900–13905

    Article  CAS  Google Scholar 

  41. Piantek M, Schulze G, Koch M, Franke KJ, Leyssner F, Kruger A, Navio C, Miguel J, Bernien M, Wolf M, Kuch W, Tegeder P, Pascual JI (2009) Reversing the thermal stability of a molecular switch on a gold surface: ring-opening reaction of nitrospiropyran. J Am Chem Soc 131:12729–12735

    Article  CAS  Google Scholar 

  42. Kiebwetter R, Pustet N, Brandl F, Mannschreck A (1999) 10, 30, 30-Trimethyl-6-nitrospiro[2H-1-benzopyran-2,20-indoline]: its thermal enantiomerization and the equilibration with its merocyanine. Tetrahedron Asymmetry 10:4677–4687

    Article  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li HPHX, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima YT, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, JEP Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, A Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, J Jaramillo C, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas JÖ , Foresman B, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1

    Google Scholar 

  44. Wang Y-G (2009) Examination of DFT and TDDFT methods II. J Phys Chem A 113:10873–10879

    Article  CAS  Google Scholar 

  45. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange– correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  47. Sumimoto M, Kawashima Y, Yokogawa D, Hori K, Fujimoto H (2012) Influences of dispersion and long-range corrections on molecular structures of three types of lithium phthalocyanine dimer. Int J Quantum Chem. doi:10.1002/qua.24072

    Google Scholar 

  48. Becke A (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  49. Mohan N, Vijayalakshmi KP, Koga N, Suresh CH (2010) Comparison of aromatic NH___π, OH___π, and CH___π interactions of alanine using MP2, CCSD, and DFT methods. J Comput Chem 31:2874–2882

    CAS  Google Scholar 

  50. Futami Y, Chin MLS, Kudoh S, Takayanagi M, Nakata M (2003) Conformations of nitro-substituted spiropyran and merocyanine studied by low-temperature matrix-isolation infrared spectroscopy and density-functional-theory calculation. Chem Phys Lett 370:460–468

    Article  CAS  Google Scholar 

  51. Hobley J, Malatesta V, Millini R, Montanari L, Neil Parker WO (1999) Proton exchange and isomerisation reactions of photochromic and reverse photochromic spiro-pyrans and their merocyanine forms. Phys Chem Chem Phys 1:3259–3267

    Article  CAS  Google Scholar 

  52. Buback J, Nuernberger P, Kullmann M, Langhojer F, Schmidt R, Wurthner F, Brixner T (2011) Ring-closure and isomerization capabilities of spiropyran-derived merocyanine isomers. J Phys Chem A 115:3924–3935

    Article  CAS  Google Scholar 

  53. Meir R, Chen H, Lai W, Shaik S (2010) Oriented electric fields accelerate diels–alder reactions and control the endo/exo selectivity. ChemPhysChem 11:301–310

    Article  CAS  Google Scholar 

  54. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  55. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  56. Shiraishi Y, Itoh M, Hirai T (2010) Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication. Phys Chem Chem Phys 12:13737–13745

    Article  CAS  Google Scholar 

  57. Campredon M, Giusti G, Guglielmetti R, Samat A, Gronchi G, Alberti A, BenagliaM(1993) Radical ions and germyloxyaminoxyls from nitrospiro[indoline-naphthopyrans]. A combined electrochemical and EPR study. J Chem Soc Perkin Trans 2:2089–2094

    Google Scholar 

  58. Preigh MJ, Stauffer MT, Lin F-T, Weber SG (1996) Anodic oxidation mechanism of a spiropyran. J Chem Soc Faraday Trans 92:3991–3996

    Article  CAS  Google Scholar 

  59. Jukes RTF, Bozic B, Hartl F, Belser P, De Cola L (2006) Synthesis, photophysical, photochemical, and redox properties of nitrospiropyrans substituted with Ru or Os Tris(bipyridine) complexes. Inorg Chem 45:8326–8341

    Article  CAS  Google Scholar 

  60. Wagner K, Byrne R, Zanoni M, Gambhir S, Dennany L, Breukers R, Higgins M, Wagner P, Diamond D, Wallace GG, Officer DL (2011) A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. J Am Chem Soc 133:5453–5462

    Article  CAS  Google Scholar 

  61. Zhi JF, Baba R, Hashimoto K, Fujishima A (1995) A Multifunctional electro-optical molecular device. The photoelectrochemical behavior of spirobenzopyrans in dimethylformamide. Ber Bunsenges Phys Chem 99:32–39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Remacle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganesan, R., Remacle, F. (2014). Stabilization of merocyanine by protonation, charge, and external electric fields and effects on the isomerization of spiropyran: a computational study. In: Champagne, B., Deleuze, M., De Proft, F., Leyssens, T. (eds) Theoretical Chemistry in Belgium. Highlights in Theoretical Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41315-5_14

Download citation

Publish with us

Policies and ethics