Skip to main content

Perceptual Characteristic and Compression Research in 3D Audio Technology

  • Conference paper
From Sounds to Music and Emotions (CMMR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7900))

Included in the following conference series:

  • 3524 Accesses

Abstract

The 3D audio coding forms a competitive research area due to the standardization of both international standards (i.e. MPEG) and localized standards (i.e. Audio and Video Coding Standard workgroup of China, AVS). Perception of 3D audio is a key issue for standardization and remains a challenging problem. Besides current solutions adopted from traditional audio engineering, we are working for an original 3D audio solution for compression. This paper represents our initial results about 3D audio perception include directional measurement of Just Noticeable Difference (JND) and Perceptual Entropy (PE). We also represent the possible applications of these results in our future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkhout, A.J.: A holographic approach to acoustic control. Journal of the Audio Engineering Society 36, 977–995 (1988)

    Google Scholar 

  2. Berkhout, A., De Vries, D., Vogel, P.: Acoustic control by wave field synthesis. J. Acoust. Soc. Am. 93, 2764–2778 (1993)

    Article  Google Scholar 

  3. Rabenstein, R., Spors, S.: Wave field synthesis techniques for spatial sound reproduction. In: Topics in Acoustic Echo and Noise Control, pp. 517–545. Springer, Heidelberg (2006)

    Google Scholar 

  4. De Vries, D.: Wave Field Synthesis: History, State-of-the-Art and Future (Invited Paper). In: ISUC 2008. Second International Symposium on Universal Communication, vol. 2008, pp. 31–35 (2008)

    Google Scholar 

  5. De Bruijn, W.: Application of wave field synthesis in videoconferencing, Delft University of Technology (2004)

    Google Scholar 

  6. Vogel, P.: Application of Wave Field Synthesis in Room Acoustics, Delft University of Technology (1993)

    Google Scholar 

  7. Daniel, J., Nicol, R., Moreau, S.: Further Investigations of High-Order Ambisonics and Wavefield Synthesis for Holophonic Sound Imaging. In: Audio Engineering Society Convention 114, Convention Paper 5788, Amsterdam, The Netherlands (2003)

    Google Scholar 

  8. Gerzon, M.A.: Ambisonics: Part two: Studio techniques. Studio Sound (1975)

    Google Scholar 

  9. Malham, D.G.: Spatial hearing mechanisms and sound reproduction. University of York (1998)

    Google Scholar 

  10. Furness, R.K.: Ambisonics-an overview. In: 8th International Conference: The Sound of Audio, pp. 181–189 (1990)

    Google Scholar 

  11. Keating, D.: The generation of virtual acoustic environments for blind people. In: Proc.1st Euro. Conf: Disability, Virtual Reality & Assoc. Tech., pp. 201-207. Maidenhead, UK (1996)

    Google Scholar 

  12. Elen, R.: Whatever happened to Ambisonics? AudioMedia Magazine (November 1991)

    Google Scholar 

  13. Gerzon, M.A.: Ambisonics in multichannel broadcasting and video. J. Audio Eng. Soc. 33, 859–871 (1985)

    Google Scholar 

  14. Strutt, J.W.: On our perception of sound direction. Philosophical Magazine 13, 214–232 (1907)

    Article  Google Scholar 

  15. Theile, G., Wittek, H.: Principles in Surround Recordings with Height. Audio Engineering Society Convention, 130 (2011)

    Google Scholar 

  16. Hiyama, K., Komiyama, S., Hamasaki, K.: The minimum number of loudspeakers and its arrangement for reproducing the spatial impression of diffuse sound field. Audio Engineering Society Convention, 113 (2002)

    Google Scholar 

  17. Ando, A.: Home Reproduction of 22.2 Multichannel Sound. In: 5th International Universal Communication Symposium (2011)

    Google Scholar 

  18. Oode, S., Sawaya, I., Ando, A., Hamasaki, K., Ozawa, K.: Vertical Loudspeaker Arrangement for Reproducing Spatially Uniform Sound. Audio Engineering Society Convention, 131 (2011)

    Google Scholar 

  19. Hamasaki, K., Nishiguchi, T., Okumura, R., Nakayama, Y., Ando, A.: A 22.2 multichannel sound system for ultrahigh-definition TV (UHDTV). Smpte Motion Imaging Journal 117, 40–49 (2008)

    Article  Google Scholar 

  20. Cheng, B., Ritz, C., Burnett, I.: A Spatial Squeezing approach to Ambisonic audio compression. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 369–372. IEEE (2008)

    Google Scholar 

  21. Hellerud, E., Solvang, A., Svensson, U.P.: Spatial redundancy in Higher Order Ambisonics and its use for lowdelay lossless compression. In: IEEE International Conference on Acoustics, Speech and Signal Processing 2009 (ICASSP 2009), pp. 269–272 (2009)

    Google Scholar 

  22. Pinto, F., Vetterli, M.: Space-Time-Frequency Processing of Acoustic Wave Fields: Theory, Algorithms, and Applications. IEEE Transactions on Signal Processing 58, 4608–4620 (2010)

    Article  MathSciNet  Google Scholar 

  23. Hershkowitz, R., Durlach, N.: Interaural Time and Amplitude JNDs for a 500‐Hz Tone. The Journal of the Acoustical Society of America 46, 1464–1465 (1969)

    Article  Google Scholar 

  24. Mossop, J.E., Culling, J.F.: Lateralization of large interaural delays. The Journal of the Acoustical Society of America 104, 1574–1579 (1998)

    Article  Google Scholar 

  25. Mills, A.W.: Lateralization of High‐Frequency Tones. The Journal of the Acoustical Society of America 32, 132–134 (1960)

    Article  Google Scholar 

  26. Dunai, L., Hartmann, W.M.: Frequency dependence of the interaural time difference thresholds in human listeners. The Journal of the Acoustical Society of America 129, 2485–2485 (2011)

    Article  Google Scholar 

  27. Painter, T., Spanias, A.: Perceptual coding of digital audio. Proceedings of the IEEE 88, 451–515 (2000)

    Article  Google Scholar 

  28. Moore, B.C.J.: Masking in the Human Auditory System. In: Audio Engineering Society Conference: Collected Papers on Digital Audio Bit-Rate Reduction. Audio Engineering Society, New York (1996)

    Google Scholar 

  29. Bosi, M., Goldberg, R.E.: Introduction to digital audio coding and standards. Kluwer Academic Publishers, Boston (2003)

    Book  Google Scholar 

  30. Johnston, J.D.: Transform coding of audio signals using perceptual noise criteria. IEEE Journal on Selected Areas in Communications 6, 314–323 (1988)

    Article  Google Scholar 

  31. Faller, C., Baumgarte, F.: Binaural cue coding—part II: schemes and applications. IEEE Transactions on Speech and Audio Processing 11(6), 520–531 (2003)

    Article  Google Scholar 

  32. Hamasaki, K., Hiyama, K., Nishiguchi, T., Okumura, R.: Effectiveness of Height Information for Reproducing the Presence and Reality in Multichannel Audio System. In: Audio Engineering Society Convention, Paris, France, vol. 120 (2006)

    Google Scholar 

  33. Geier, M., Wierstorf, H., Ahrens, J., Wechsung, I., Raake, A., Spors, S.: Perceptual evaluation of focused sources in wave field synthesis. In: AES 128th Convention, pp. 22–25 (2010)

    Google Scholar 

  34. George, S.: Objective models for predicting selected multichannel audio quality attributes, Department of Music and Sound Recording, University of Surrey (2009)

    Google Scholar 

  35. Epain, N., Guillon, P., Kan, A., Kosobrodov, R., Sun, D., Jin, C., Van Schaik, A.: Objective evaluation of a three-dimensional sound field reproduction system. In: Proceedings of 20th International Congress on Acoustics, Sydney, Australia (2010)

    Google Scholar 

  36. Song, W., Ellermeier, W., Hald, J.: Psychoacoustic evaluation of multichannel reproduced sounds using binaural synthesis and spherical beamforming. The Journal of the Acoustical Society of America 130, 2063–2075 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, R., Dong, S., Wang, H., Zhang, M., Wang, S., Li, D. (2013). Perceptual Characteristic and Compression Research in 3D Audio Technology. In: Aramaki, M., Barthet, M., Kronland-Martinet, R., Ystad, S. (eds) From Sounds to Music and Emotions. CMMR 2012. Lecture Notes in Computer Science, vol 7900. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41248-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41248-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41247-9

  • Online ISBN: 978-3-642-41248-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics